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Slow excitation supports propagation of slow pulses in networks
of excitatory and inhibitory populations
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We study the propagation of traveling solitary pulses in one-dimensional networks of excitatory and inhibi-
tory neurons. Each neuron is represented by the integrate-and-fire model, and is allowed to fire only one spike.
Two types of propagating pulses are observed. During fast pulses, inhibitory neurons fire a short time before or
after the excitatory neurons. During slow pulses, inhibitory cells fire well before neighboring excitatory cells,
and potentials of excitatory cells become negative and then positive before they fire. There is a bistable
parameter regime in which both fast and slow pulses can propagate. Fast pulses can propagate at low levels of
inhibition, are affected by fast excitation but are almost unaffected by slow excitation, and are easily elicited by
stimulating groups of neurons. In contrast, slow pulses can propagate at intermediate levels of inhibition, and
are difficult to evoke. They can propagate without slow excitation, but slow excitation makes their propagation
substantially more robust. Fast pulses can propagate in a wider parameter regime if inhibition decays slowly
with time, whereas slow pulses can propagate in a wider parameter regime if the passive time constant of
inhibitory cells is large. Strong inhibitory-to-inhibitory conductance eliminates the slow pulses and converts
the fast traveling pulses into irregular pulses, in which the inhibitory neurons segregate into two groups that
have different firing delays with respect to their neighboring excitatory cells. In general, the velocity of the fast
pulse increases with the axonal conductance velocityc, but there are cases in which it decreases withc. We
suggest that the fast and slow pulses observed in our model correspond to the fast and slow propagating
activity observed in experiments on neocortical slices.

DOI: 10.1103/PhysRevE.65.061911 PACS number~s!: 87.19.La, 87.10.1e, 05.45.2a
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I. INTRODUCTION

Epilepticlike discharges can propagate in cortical slic
when the strength of inhibition is reduced by only 10–20
@1,2#, but they cannot propagate in healthy cortical slic
under physiological conditions when inhibition is intact. I
hibition shapes the form of these pulses, and reduces
velocity @1#. Recent experiments in rodents@3,4# and ferrets
@5# revealed a different type of propagating pulse in corti
tissue when inhibition is intact or partially reduced. This a
tivity is nonepileptic, with firing rate of individual neuron
that is typically low (,10 Hz). The generation and term
nation of this propagating state may account for the gen
tion of a subset of cortical rhythm during sleep. In inta
ferret slices, the propagating velocity is slow, about 1.1 cm
@5#. When inhibition is blocked, the activity becomes epile
ticlike and the velocity becomes fast, about 9 cm/s. T
propagation of slow pulses depends on the existence of s
N-methyl-D-aspartate~NMDA-mediated! excitation. When
this excitation is blocked, the slow pulse often, but not
ways, cannot propagate@5#. In contrast, blocking the slow
excitation does not prevent the propagation of the fast pu
@6#. Blocking the fast a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid~AMPA-mediated! excitation pre-
vents the appearance of both fast and slow pulses@5,6#.

A large amount of theoretical work has been devoted
networks composed of excitatory neurons only with spatia
decaying connectivity@6–10#. We studied networks of exci
1063-651X/2002/65~6!/061911~16!/$20.00 65 0619
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tatory and inhibitory populations with fast synapses in
abstract form@11# and in a Letter@12#. We found that fast
pulses can propagate in those systems either without or
small levels of inhibition. In addition, we discovered th
slow pulses can propagate at intermediate levels of inh
tion, but only in a restricted parameter regime. There is a
a bistable regime in which the two pulse types can propag
The existence of slow and fast pulses in the model, as we
in experiments, raises the following theoretical questions

~1! How is propagation mediated by excitatory synaps
with various kinetics? Can slow pulses propagate in a m
robust manner if the system includes slow excitatory s
apses?

~2! What are the types of transition from fast to slo
propagation as inhibition is enhanced?

~3! How is the initiation of the pulses affected by initia
conditions?

~4! How does the appearance of the two pulse types
pend on the strength and the connectivity ranges of the v
ous synaptic coupling conductances?

~5! How do time constants of inhibitory cells and sy
apses affect propagation?

~6! What are the effects of finite axonal velocity?
To answer these questions, we further analyze our sim

model of a network composed of excitatory and inhibito
neurons. The single cell is represented by a simplified v
sion of the integrate-and-fire neuronal model, in which
neuron is allowed to fire only one spike, and then it is sile
©2002 The American Physical Society11-1
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forever. This model, which is exact in the limit of a very lon
refractory period or very strong synaptic depression, is a
nable to analytical treatment. The velocity of traveling puls
in this model, their stability, and the delay between the fir
times of neighboring excitatory and inhibitory cells durin
the pulse, are calculated analytically. In particular, we inv
tigate the role of the slow excitation in supporting the prop
gation of the slow pulse.

The paper is organized as follows. The model is presen
in Sec. II. The mathematical analysis of existence and sta
ity of traveling pulse solutions and the calculation of veloc
and lag between excitatory and inhibitory cells during t
pulses are described in Sec. III. Based on this analysis
investigate the properties of fast and slow pulses, neglec
axonal conduction velocity in Sec. IV. Effects of finite axon
velocity are described in Sec. V. The results and conclus
are discussed in Sec. VI.

II. THE MODEL

A. Model definition

We consider a one-dimensional network of excitatory~E!
and inhibitory~I! neurons@Fig. 1~a!#. A neuron is described
by its membrane potentialVa(x,t), a5E,I , and its dynam-
ics is governed by the integrate-and-fire scheme in the ex
able regime@9#

]Va~x,t !

]t
52

Va~x,t !

t0a
1I syn,Ea~x,t !2I syn,Ia~x,t !. ~1!

Here,t0a is the passive membrane time constant of the n
ron, and I syn,Ea ~resp. I syn,Ia) is the total synaptic curren
contributed by the excitatory~resp. inhibitory! population.

When the membrane potential of a neuronV reaches a
thresholdVTa , the neuron fires a spike, after which it b
comes silent forever. This ‘‘single-spike’’ model is exact
the limit of very long refractory period or very strong sy
aptic depression@13#. In the following, we denote byTa(x)
the time at which a neuron located atx fires. A presynaptic
spike induces a postsynaptic current that is proportiona
the functionaba(t), where

FIG. 1. Schematic diagram of the model architecture.~a! Neu-
ronal populations and synaptic types.~b! The one-dimensional ar
chitecture of the network.
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aba~ t !5H 1

tsba
exp~2t/tsba! t>0,

0 otherwise.

~2!

For the excitatory coupling, we consider two types of syna
tic current: a fast~f! current and and a slow~s! current,
corresponding to the contribution of AMPA and NMDA syn
aptic receptors in a biological network, respectively. T
function aEa(t) and the decay timetsEa have a superscrip
g5$ f ,s% denoting whether the decay of the excitatory cu
rent is fast or slow.

The network architecture is shown in Fig. 1~b!. The con-
tributions to the synaptic current from the excitatory a
inhibitory populations are

I syn,Ea~x,t !5 (
g5 f ,s

gEa
g E

2`

`

dx8 wEa~x2x8!

3aEa
g
„t2TE~x8!…, ~3!

I syn,Ia~x,t !5gIaE
2`

`

dx8wIa~x2x8! a Ia„t2TI~x8!…,

~4!

where gba is the synaptic coupling strength from theb
population to thea population. The spatial dependence
the synaptic strength on distance~‘‘synaptic footprint
shape’’! is given by

wba~x!5
1

2sba
exp~2uxu/sba!. ~5!

The spatial variablex is dimensionless and represents t
distance in terms of the excitatory footprintsEE that is set to
1. As a result, the velocityn has units of ms21.

B. Reference parameter set

In the following, we study the model in its general form
Numerical examples, however, are shown for a particular
of parameters, called the ‘‘reference parameter set,’’ w
t0E5t0I530 ms, tsEE

f 5tsEI
f 52.5 ms, tsEE

s 5tsEI
s

550 ms, tsIE5tsII58 ms, gEE
f 512, gEE

s 510, sEE51,
gIE55.2, s IE50.5, gEI

f 530, gEI
s 50, sEI51, gII 52, s II

50.5, VTE5VTI51. These parameters are used unless sta
otherwise. Since the slowE-to-I excitationgEI

s does not have
a strong effect on the network dynamics, we consider it to
zero.

III. ANALYSIS OF TRAVELING PULSE SOLUTIONS

A. Volterra representation

In order to analyze the dynamics, we define the Gree
function Gba(t) for t.0 as

dGba

dt
52

Gba

t0a
1aba~ t ! ~6!
1-2
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andGba50 for t,0. The functionsGEa have also a super
script g. For t.0, we obtain

Gba~ t !5
t0a

t0a2tsba
@exp~2t/t0a!2exp~2t/tsba!#.

~7!

The integrated form of Eqs.~1!, ~3!, ~4! is given by the two
Volterra equations fora5E,I :

VTa5 (
g5 f ,s

gEa
g E

2`

`

dx8wEa~x8!GEa
g @Ta~x!2TE~x2x8!#

2gIaE
2`

`

dx8wIa~x8!GIa@Ta~x!2TI~x2x8!#. ~8!

In addition, the neuronal voltage should be below thresh
before spiking~‘‘causality criterion’’!,

Va~x,t !,VTa for all t,Ta~x!, a5E,I . ~9!

A necessary, but not sufficient, condition for this is

dVa@x,t#

dt U
t5Ta(x)

.0, a5E,I . ~10!

B. Existence of traveling pulses

We consider a traveling pulse solution with velocityn.
Without loss of generality, we assume thatn.0. The firing
time of an inhibitory cell lags after the firing time of a
excitatory cell at the same position byz,

TE~x!5
x

n
, TI~x!5

x

n
1z. ~11!

Negativez means that anI cell fires before a neighboringE
cell. Substituting Eq.~11! into Eq. ~8! yields

VTa5BEa
f 1BEa

s 2BIa , ~12!

where

Bba
g 5gba

g E
0

`

dx wba~x1z n sba!Gba
g S x

n D . ~13!

We definesba5(sa2sb)/2, wheresE51 andsI521. Sub-
stituting the expressions forGba andwba in Eqs.~12!, ~13!,
we obtain two algebraic equations forn andz, for negative
z,

VTE5
t0E n sEE

2~n t0E1sEE! (
g

gEE
g 1

~n tsEE
g 1sEE!

2gIE

t0En

~t0E2tsIE! F t0E
2 n

n2 t0E
2 2s IE

2
expS z

t0E
D

2
tsIE

2 n

n2 tsIE
2 2s IE

2
expS z

tsIE
D

06191
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1
~t0E2tsIE!s IE

2~n t0E2s IE!~n tsIE2s IE!
expS zn

s IE
D G , ~14!

VTI5
t0I n sEI

2~n t0I1sEI!
expS zn

sEI
D(

g
gEI

g 1

~n tsEI
g 1sEI!

2gII

t0I n s II

2~n t0I1s II !~n tsII1s II !
. ~15!

Similarly, for positivez, we obtain the following two al-
gebraic equations forn andz:

VTE5
t0E n sEE

2~n t0E1sEE! (
g

gEE
g 1

~n tsEE
g 1sEE!

2gIE

t0E n s IE

2~n t0E1s IE!~ntsIE1s IE!
expS 2zn

s IE
D ,

~16!

VTI5(
g

gEI
g t0I n

~t0I2tsEI
g !

F t0I
2 n

n2 t0I
2 2sEI

2
expS 2z

t0I
D

2
~tsEI

g !2 n

n2 ~tsEI
g !22sEI

2
expS 2z

tsEI
g D

1
~t0I2tsEI

g !sEI

2~n t0I2sEI!~n tsEI
g 2sEI!

expS 2zn

sEI
D G

2gII

t0I n s II

2~n t0I1s II !~n tsII1s II !
. ~17!

Propagating pulses exist only if Eqs.~14!, ~15! have at
least one solutionn with z,0, or if Eqs.~16!, ~17! have at
least one solutionn with z.0.

C. Stability of traveling pulses

Stability of the continuous pulses is calculated by follo
ing the growth rate of a small perturbation

TE~x!5x/n1uE~x!, ~18!

TI~x!5x/n1z1u I~x!. ~19!

Substituting these perturbations in Eq.~8!, and keeping only
the first-order terms inuE , u I , we obtain two equations fo
a5E,I ,

05 (
g5 f ,s

gEa
g E

z n sEa

`

dx8wEa~x8!G8Ea
g S x8

n
2z SEaD

3@ua~x!2uE~x2x8!#2gIaE
z n sIa

`

dx8wIa~x8!

3GIa8 S x8

n
2z SIaD @ua~x!2u I~x2x8!#, ~20!
1-3
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where

G8~ t !5dG~ t !/dt. ~21!

Assuming that the perturbations evolve asuE(x)
5uE0exp(lx) and u I(x)5u I0exp(lx), yields the matrix
equation

(
b5E,I

Aba~l!ub050, ~22!

where

AEE~l!5(
g

gEE
g E

0

`

dx wEE~x!G8EE
g S x

n D ~12e2lx!

2gIEE
zn

`

dx wIE~x!GIE8 S x

n
2z D , ~23!

AIE~l!5gIEE
zn

`

dx wIE~x!GIE8 S x

n
2z De2lx, ~24!

AEI~l!52(
g

gEI
g E

2zn

`

dx wEI~x!G8EI
g S x

n
1z De2lx,

~25!

AII ~l!5(
g

gEI
g E

2zn

`

dx wEI~x!G8EI
g S x

n
1z D

2gII E
0

`

dx wII ~x!GII8 S x

n D ~12e2lx!. ~26!

Equation~22! has nontrivial solutions if

det@A~l!#50. ~27!

The valuel50 is always a solution of the characterist
equation~27! because of the translation invariance. Ap
from this marginal stability, the traveling pulse is stable if
the other solutions of this equation have negative real pa
The values ofAba(l) for Eqs.~2!, ~5! are given in Appendix
A.

A pulse can lose stability at a saddle-node bifurcat
~SNB!, where thel50 solution to Eq.~27! is a double zero,
namely,

d$det@A~l!#%/dlul5050. ~28!

Alternatively, a pulse can lose stability at a Hopf bifurcati
~HB!, where Eq. ~27! has two imaginary solutions with
l56 iv.

D. Activity of I cells

We have studied the existence and stability of the trav
ing solution, Eq.~11!, under the assumption that bothE and
I cells participate in the firing. With smallgEI

g , g5s, f , how-
ever, there may be a situation in which only theE cells fire,
whereas theI cells are quiescent. In order to determi
whether for particulargEI

g the I cells are excited, we realiz
06191
t
l
ts.

n

l-

that if the I cells are quiescent,n is determined solely from
the interactions between theE cells @Eq. ~14!#,

VTE5
t0EnsEE

2~nt0E1sEE! (
g5 f ,s

gEE
g 1

~ntsEE
g 1sEE!

. ~29!

The I cells do not fire if their voltage is below their thresh
old, VTI for all t.0. Without loss of generality, we conside
a traveling excitatory pulseTE(x)5x/n affecting an inhibi-
tory neuron located atx50. The voltage of thisI neuron is
given by Eqs.~1!, ~3!, ~4!, and~6!,

VI~0,t !5 (
g5 f ,s

gEI
g E

2tn

`

dxwEI~x!GEI
g S t1

x

n D . ~30!

For t,0, VI is

VI~0,t !5
t0InsEI

2~nt0I1sEI!
expS tn

sEI
D (

g5 f ,s
gEI

g 1

~ntsEI
g 1sEI!

~31!

and for t.0, it is

VI~0,t !5nt0I (
g5 f ,s

gEI
g F 2nt0I

2 exp~2t/t0I !

~t0I2tsEI
g !~sEI1nt0I !~sEI2nt0I !

1
n~tsEI

g !2exp~2t/tsEI
g !

~t0I2tsEI
g !~sEI1ntsEI

g !~sEI2ntsEI
g !

1
sEIexp~2nt/sEI!

2~sEI2nt0I !~sEI2ntsEI
g !

G . ~32!

The I cells are recruited by the traveling pulse if there is
value of t such thatVI(0,t)5VTI . The dependence of th
minimal gEI

f for which theI cells are recruited onn is shown
in Fig. 2 for the reference parameter set~in which gEI

s 50).
For n→` andgEI

s 50, the minimalgEI
f is

~gEI
f !minimal/VTI5S tsEI

f

t0I
D tsEI

f /(tsEI
f

2t0I )

. ~33!

FIG. 2. The minimalgEI
f for which theI cells are recruited to the

pulse as a function ofn. The reference parameter set is used~except
for gEI

f ); in particular,gEI
s 50. As n→`, the minimalgEI

f value,
1.253, is given by Eq.~33!.
1-4
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As seen in Fig. 2, the values of (gEI
f )minimal for n of order

1 ms21 are close to that asymptotic value.

E. Voltage profile

For a traveling pulse, the voltage profile of theE and I
neurons that have not fired is determined by the voltage
file of the neurons at timet50,

Va~x,t !5Va~x2nt,0!, a5E,I . ~34!

We calculateVE(x2nt,0) in the domain 0<x<` and
VI(x2nt,0) in the domain2zn<x<` using Eqs.~1!, ~3!,
~4!, and~6! and obtain

Va~x,0!5 (
g5 f ,s

gEa
g E

0

`

dx8wEa~x1x8!GEa
g S x8

n D
2gIaE

zn

`

dx8wIa~x1x8!GIaS x8

n
2z D . ~35!

The values ofVa(x,0) for z,0 are given in Appendix B.
Numerical techniques used throughout this article are
scribed in Appendix C.

IV. PROPAGATION OF PULSES IN NETWORKS
WITH INHIBITION AND SLOW EXCITATION

The main goal of this paper is to study the effects
inhibition on pulse propagation. Therefore, we emphasize
effects of the parametergIE and study how it modifies the
system dynamics under various conditions. Effects of ot
parameters are also studied.

A. The dependence of the existence and stability of slow
and fast pulses on inhibition and slow excitation

The dependence ofn ~upper and middle panels! and z
~lower panels! on gIE is shown in Figs. 3~a!–3~c! for the
reference parameter set, three values ofgEI

f , and two values
of gEE

s : 0 ~thin lines! and 10~thick lines!. We first describe
the situation forgEE

s 50. At low gEI
f values, there is only one

stable branch of ‘‘fast’’ pulses, which terminates at a SN
At intermediategEI

f values, bistability exists, and at interm
diate gIE values both the fast pulse and the slow pulse
propagate. ThegIE regime in which bistability exists is
pretty restricted, because the slow pulse is terminated b
HB. At large gEI

f values, there is a crossover between f
pulses and a slow pulses asgIE increases. The slow pulse
still destabilized by an HB at a certaingIE value. Whereas
our theory cannot determine what happens forgIE larger than
its value at the HB, extensive numerical simulations indic
that no pulse can propagate in that regime. This situatio
different from the case of excitatory networks with del
@10#, where the HB leads to the propagation of discontin
ous, ‘‘lurching’’ pulses. IncreasinggEE

s to 10 modifies the
n-gIE curve in two aspects. First, the branch in the bifurc
tion diagram corresponding to the slow pulse extends
wider gIE region. Second, there is no HB. As a result, t
slow E-to-E excitation increases the regime where sta
06191
o-

e-

f
e

r

.

n

a
t

e
is

-

-
r

e

slow pulses can propagate. For all thegEE
s and gEI

f values,
the time differenceuzu increases asn decreases, and there
fore the time lead of theI cell is larger for the slow pulse
than for the fast pulse.

For all the parameter regimes we have examined,E cells
fire before or slightly after theI cells during the fast pulse
and the values ofz are small positive or negative values,
order 1 ms. In contrast, during the propagation of the sl
pulse,E cells fire well after theI cells, andz is negative, on
the order of a few tens of ms. The slow pulse can theref
be viewed as a front ofI cells’ spikes pushed from behind b
the E cells’ spikes; because eachE cell receives strong inhi-
bition from neurons in front of it, the pulse propagat
slowly.

In addition to the branches of solution shown in Fig.
two other unstable branches may appear. In one of th
excitatory cells lead in firing. These branches do not usu
affect the system dynamics, except for within specific para
eter regimes that will be described below.

The voltage profile of neurons that have not fired yet
time t50 is shown in Fig. 4 for the reference parameter s
With this set of parameters, the fast pulse and the slow p
coexist. During the fast pulse, the membrane potential o
neuron at a positionx decays monotonically with distanc
from the pulse. During the slow pulse, the potential of thI
cells also decays monotonically. However, during the sl
pulse, the potential of theE cell first decays rapidly and
reaches a negative value. Then, it increases to positive va
and then decreases again. Note that a mirror image of
same profile, with the abscissa stretched by a factor of 1n,

FIG. 3. The velocityn of propagating pulses~upper and middle
panels!, and the differencez between the firing times of inhibitory
and excitatory cells at the same position~lower panels!, as functions
of inhibitory-to-excitatory synaptic strengthgIE for the reference
parameter set and three values of the excitatory-to-inhibitory s
aptic strengthgEI

f : ~a! gEI
f 515. ~b! gEI

f 530. ~c! gEI
f 545. Thick

lines represent pulses withgEE
s 510, and thin lines represent pulse

with gEE
s 50. Solid lines represent stable pulses and dashed l

represent unstable pulses. In the middle panels, which are ex
sions of the upper panels, Hopf bifurcations are denoted by o
circles. Bistability of fast and slow pulses is observed for moder
values ofgEI

f andgIE .
1-5



ta
ex
n
th

i
s

th
e

eu

os

f
o

e

te

he

lim

an

a
an

-
h

n

pa

ow
nd
e

n
oes
d
nt.
ich
e in

e

f the

ime

ow
e

d by

DAVID GOLOMB AND G. BARD ERMENTROUT PHYSICAL REVIEW E65 061911
describes the temporal behavior of the pulse at a cons
position x. This means that during the slow pulse, each
citatory neuron is first excited, but then is affected by stro
inhibition and its potential becomes negative. Only when
pulse continues to propagate and the effect of inhibition
diminished, is the neuron again affected by excitation and
can reach threshold and fire.

Plotting the voltage profile as a function ofx ~Fig. 4!
demonstrates a case in whichn and z are different for the
fast pulse and the slow pulse, but the value ofnz is similar.
Since the footprint ranges in the model are of order 1,
value unzu should be of order 1 or less, otherwise the spik
emitted by neurons from one population do not affect n
rons in the other population. Hence, lowern enablesz to
have larger values, that can be, in principle, negative or p
tive.

To further demonstrate thatgEE
s increases the regime o

slow-pulse propagation, we present in Fig. 5 tw
dimensional bifurcation diagrams in thegEI

f -gIE plane, for
gEE

s 50 @Fig. 5~a!# and gEE
s 510 @Fig. 5~b!#. The fast pulse

exists forgIE*0 for all gEI
f values. Three lines of SNB ar

plotted. The lower SNB line~dashed!, corresponding to the
minimal gIE value above which the fast pulse can propaga
is bounded by two codimension-2 cusp bifurcations@14#.
The cusp at lowgEI

f , denoted by the asterisk, produces t
slow-pulse branch as a ‘‘ripple’’ on an unstable solution@see
Fig. 3~a!, thick line#. The cusp at highgEI

f , denoted by the
diamond, connects the slow and the fast branches, and e
nates the unstable branch between them. At highergEI

f val-
ues, there is a continuous crossover between the fast br
and the slow branches asgEI

f increases. ForgEE
s 50, but not

for gEE
s 510, there is a line of HB representing the maxim

gIE above which the slow pulse is unstable. Comparing p
els, Figs. 5~a! and 5~b!, shows that in Fig. 5~b!, the slow-
pulse regime, and also the bistable regime~in which the two
pulse types can propagate!, have larger areas in the two
parameter space for two reasons. First, the slow branc
terminated by a SNB at highergIE values. Second, the slow
branch is not destabilized by a HB ifgEE

s is large enough.
The contribution of the slowE-to-E excitation to the ex-

tension of the regime of stable slow pulses is also show

FIG. 4. The potentialsV of excitatory neurons~solid line! and
inhibitory neurons~dashed line! that have not fired yet at time
t50 are plotted as a function of their position. The reference
rameter set is used; in particular,gIE55.2 andgEE

s 510. ~a! Poten-
tials during the fast pulse.~b! Potentials during the slow pulse.
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FIG. 5. Regimes of existence and stability of fast and/or sl
pulses in thegEI

f -gIE plane for the reference parameter set a
gEE

s 50 ~a! and gEE
s 510 ~b!. Saddle-node bifurcation curves ar

denoted by thick lines, dotted line, the maximalgIE value of the fast
pulse; dashed line, the minimalgIE value of the slow pulse, solid
line, the maximalgIE value of the slow pulse. The Hopf bifurcatio
curve in ~a!, is denoted by the dot-dashed line. Such a curve d
not appear in~b!. For gEI

s value smaller than the thin long-dashe
line, only excitatory cells fire, and inhibitory cells are quiesce
Shadings: dark gray, bistable regime; light gray, regime in wh
only slow pulses can propagate; mesh of diagonal lines, regim
which only fast pulses can propagate; ‘‘continuous transition’’@or
‘‘C.T.’’ in ~a!#, regime of continuous transition from a fast-puls
behavior forgIE*0 to slow-pulse behavior asgIE increases. In all
the other white regimes, no pulse can propagate. The cusps o
SNB lines are denoted by an *~left! and by aL ~right!. The three
arrows below the abscissa in~b! represent the three values ofgEI

f in
Fig. 3. Slow excitation increases considerably the parameter reg
in which slow pulses can propagate.

FIG. 6. Regimes of existence and stability of fast and/or sl
pulses in thegEE

s -gIE plane. The meanings of the lines and th
shading are the same as in Fig. 5. In the white regime bounde
the HB line~dot-dashed!, the SNB line~solid! and the ordinate, the
slow pulse exists, but it is unstable. ForgIE values above the solid
line, no pulses exist.
1-6



se

a
th
ct

th
r

is
s
o
e
r

oo
-

a
pl
is

io

f

ce
ue

t-
th
ch

t
oe
k

tu
n-
u

in
ta
m
n
oc

it
a

ast
y

ptic
the

in
d
by
h
ns

rk is
ry
r

e
rve

h

ulses.

SLOW EXCITATION SUPPORTS PROPAGATION OF . . . PHYSICAL REVIEW E 65 061911
the gEE
s -gIE plane in Fig. 6 for the reference parameter

(gEI
f 530). The HB destabilizes the slow pulse only forgEE

s

values smaller than a certain value~which is gEE
s 59.24

here!. Note that for a fixedgEE
s value just below that finite

value, the slow pulse is stable in two disconnected interv
of gIE , between which it is unstable. The robustness of
slow pulse at largergEE

s values can be explained by the fa
that strong, prolongedE-to-E excitation helps excitatory
neurons to overcome the inhibition imposed on them by
inhibitory neurons that fire first, such that those excitato
neurons can eventually reach threshold and fire.

B. Response to shock initial conditions

Even if, for a particular set of parameters, a pulse ex
and is stable, it does not mean that it can be generated u
a particular choice of initial conditions. Since the space
initial conditions has, in principle, infinite dimensions, w
cannot determine the volume of the basins of attraction fo
particular propagating state in that space. Instead, we ch
to use one type of initial condition, the ‘‘shock’’ initial con
dition. All the neurons in a region 0,x,2.5 were excited at
t50, and we followed which type of pulse is generated, if
all. The shock initial condition was chosen because it re
cates the experimental situation, in which propagating d
charges are initiated by a brief spatially localized stimulat
@6#.

The system’s response to shocks is described in Fig. 7
two values ofgEE

s : 0 @Figs. 7~a! and 7~b!# and 10@Figs. 7~c!
and 7~d!#. We compared the responses for two values ofn.
We keep all the parameters at their reference values ex
for gIE , which we tuned in order to obtain the desired val
of n. ThesegIE andn values are shown in Fig. 7~e!, which is
the same as Fig. 3~b! ~middle panel!. For gEE

s 50 and n
50.085 ms21 @Fig. 7~a!#, the slow pulse is the only attrac
ing pulse. A shock stimulus initiates a transient fast pulse
propagates along a considerable distance before it swit
to the slow pulse~at aboutx530). Forn50.072 ms21 @Fig.
7~b!#, the slow pulse is also the only attracting pulse, bu
shock stimulus generates a localized activity only that d
not propagate. WhengEE

s is raised to 10, the same shoc
stimulus generates a slow pulse for the two values ofn,
beyond a small interval of fast propagation@Fig. 7~c!#, or
after two periods of ‘‘lurching’’ activity@Fig. 7~d!#.

The effect of the slow excitation can be explained in
itively as following. After a shock stimulus, in order to ge
erate a slow pulse, the firing times of the neurons sho
reorganize such that theI cells fire before theE cells at the
same position. If there is slow excitation, a cell receives
hibition and excitation due to the fast inhibitory and exci
tory synapses, and then, for a prolonged amount of ti
slow excitation that enables it to overcome the inhibition a
fire. Note that when the fast pulse is the only attractor, sh
initial conditions generate it with or withoutgEE

s for all the
cases we examined~not shown!.

C. Effects of strength of fast excitation

In the cortex, there is a delicate balance between exc
tion and inhibition, and deviations from this balance can le
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to the generation of epilepticlike discharges@1#, correspond-
ing to the fast pulses in our model. The strength of f
~AMPA-mediated! E-to-E excitatory conductance ma
change as a result of learning. For example, Saaret al. found
indirect evidence for an increase ingEE

f during olfactory
learning in rats on the order of tens of percents@15#. Despite
this increase, cortical slices do not become more epile
after learning. A possible explanation to these facts is
E-to-I excitation and/or theI-to-E inhibition increase as

FIG. 7. Network responses to a ‘‘shock’’ stimulus are shown
rastergrams@~a!–~d!#. Firing times of excitatory cells are denote
by solid circles, and firing times of inhibitory cells are denoted
open squares. There arer520 neurons from each type within eac
unit length (sEE), and spikes of only one out of every 20 neuro
are plotted. The number of neurons in each population isN
51000, and the reference parameter set is used. The netwo
initiated by an abrupt activation of all the excitatory and inhibito
neurons on the ‘‘left’’ (0,x,2.5). Simulations are carried out fo
two values ofgEE

s and two values ofn: ~a! gEE
s 50, n50.085

(gIE54.8); ~b! gEE
s 50, n50.072 (gIE55); ~c! gEE

s 510, n
50.085 (gIE56.08); ~d! gEE

s 510 n50.072 (gIE56.51). InE, the
values ofgIE and the velocitiesn of the slow pulses are shown. Th
curves, corresponding to slow pulses, are identical to the cu
shown in Fig. 3~b! ~middle panel!. Thick lines represent pulses wit
gEE

s 510, and thin lines represent pulses withgEE
s 50. Solid lines

represent stable pulses and dashed lines represent unstable p
The circles labeled~a!–~d! correspond to the value ofgIE andn in
panels~a!–~d!. Without slow excitation, it is difficult to evoke slow
pulses, even if they exist and are stable.
1-7
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well, and prevent the propagation of the fast pulse. In or
to study this hypothesis, we analyze the appearance of pr
gating pulses in thegEE

f -gIE andgEE
f -gEI

f planes.
The regimes in which the two pulse types can propag

in the gEE
f -gIE plane are shown in Fig. 8. Fast pulses c

propagate ifgIE is below a certain valuegIE,max that in-
creases withgEE

f ~dotted line!. The curve ofgIE,max as a
function of gEE

f is convex~i.e., it has a positive curvature!
and dgIE,max/dgEE

f .0. Therefore, to compensate for an i
crease ofgEE

f and prevent fast-pulse propagation, the e
hancement in the level ofgIE,max should itself increase with
gEE

f .
The minimal and maximalgIE values for which the slow

pulses cease to exist both grow almost linearly withgEE
f ,

although with different slopes. Interestingly, for a lar
enoughgEE

f , there are two HB points on the slow-puls
branch. The slow pulse is unstable between them an
stable in two separategIE intervals.

The regimes in which the two pulse types can propag
in the gEE

f -gEI
f plane are shown in Fig. 9~a!. Except for a

small parameter regime at smallgEE
f values, the dependenc

of the maximalgEI
f value for which fast pulses can propaga

~dotted line! is convex and has a positive curvature. Th
behavior is functionally similar to the dependence ofgIE,max

on gEE
f for constantgEI

f . At low gEI
f values, this regime ha

a ‘‘tail’’ that points back toward largegEE
f values.

Slow pulses can propagate ifgEI
f is above a certain value

gEI,min
f ~dashed line! that first decreases and then increases

a function of gEE
f . The asterisk points to a codimension

pitchfork bifurcation~at gEE
f 511.6, gIE510.6) of two pairs

of SNB solutions. Two more SNB lines, that stem from th
pitchfork bifurcation and correspond to the annihilation po
of two unstable solutions, are not plotted for simplicity. T
pitchfork bifurcation separates two different regimes. To d
scribe them, we should consider another pair of slow-pu
solutions, which are unstable and therefore have been
nored, but here they come to play a role. In order to foll
their effect, it is useful to look at Fig. 9~b!. For low gEE

f

values, such asgEE
f 58 ~I!, a fast-pulse solution is stable a

low gEI
f , and is destabilized at a SNB. The resulting unsta

FIG. 8. Regimes of existence and stability of fast and/or sl
pulses in thegEE

f -gIE plane. The meanings of the lines and t
shading are the same as in Fig. 5. The dotted line, below which
fast pulse can propagate, is convex as a function ofgEE

f .
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solution undergoes a second SNB, in which it is connecte
an unstable solution with positivez values that increase with
increasinggEI

f . At larger gEI
f values, a second pair of slow

pulse solutions emerges at a SNB (gEI
f 525.3), and the one

with larger velocity and smalleruzu is stable. It is easier to
view it in the z graph~lower panel!, because in then graph
~upper panel! it is hard to distinguish between the slow s

e

FIG. 9. ~a! Regimes of existence and stability of fast and/
slow pulses in thegEE

f -gEI
f plane;gIE56.5. The meanings of the

lines and the shading are the same as in Fig. 5. The asterisk p
to a codimension-2 pitchfork bifurcation of two pairs of SNB sol
tions. Two more SNB lines, that stem from this pitchfork bifurc
tion and correspond to the annihilation point of two unstable so
tions, are not plotted for simplicity. In the white regime bounded
the thin long-dashed line, the thin solid line, and the abscissa, o
excitatory cells fire as a pulse propagates. The dotted line, be
which the fast pulse can propagate, is convex as a function ofgEE

f .
~b! The velocity n of propagating pulses~upper panels!, and the
differencez between the firing times of inhibitory and excitator
cells at the same position~lower panels!, as functions ofgEI

f for the
reference parameter set,gIE56.5 and three values ofgEE

f : I. gEE
f

58. II. gEE
f 512. III. gEE

f 520. Solid lines represent stable puls
and dashed lines represent unstable pulses.
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lutions. At largergEE
f values, such atgEE

f 512 ~II !, which is
slightly larger than the value ofgEE

f at the pitchfork, the
various branches are differently connected. The fast-p
solution is destabilized by a SNB as before, but the unsta
solution is now connected by a SNB to the stable slow-pu
solution. Two unstable solutions, one with large positivez
and one with large negativez ~for largegEI

f ) are connected a
a SNB, but do not affect the dynamics. At even largergEE

f

values, such asgEE
f 520 ~III !, the fast-pulse solution does no

destabilize asgEI
f increases,n decreases only gradually, an

the negative values ofz have small absolute values~for ex-
ample,z520.94 forgEI

f 580). This pulse solution does no
destabilize even for largegEI

f values as 1000. This mean
that if gEE

f is large enough, the pulse cannot be prevented
increasinggEI

f alone.

D. Time constants of inhibitory neurons and synapses

When we study the effects of inhibition on pulse prop
gation, we need to consider the time scales of inhibitory c
and synapses. In our reference parameter set, we assum
the passive time constants of the excitatory and inhibit
neurons are equal. There are indications, however, that s
types of inhibitory interneurons have faster passive time c
stantt0I in comparison with excitatory neurons@16#. In order
to examine the effects of varyingt0I on the pulse propaga
tion, we calculated the regimes in which pulses can pro
gate in thet0I-gIE plane, as shown in Fig. 10~a!. LargegIE
values are needed to prevent the fast pulses from propag
at very smallt0I values. For largert0I values, however, the
maximal gIE value that allows fast-pulse propagation d
creases very weakly witht0I . The maximalgIE value that
allows slow-pulse propagation increases almost linearly w
t0I values ift0I is not too small.

Varying thetsIE , the decay time of inhibitory synapse
while keeping the equalitytsII5tsIE , causes different ef-
fects, as seen in Fig. 10~b!. The maximalgIE that is needed
for terminating the fast pulse increases linearly withtsIE .
This can be explained by the fact that the synaptic functi
aba(t) are normalized such that their integral is 1@Eq. ~2!#.
Therefore, the peak ofa IE is proportional to 1/tsIE . If tsIE is
increased,gIE should be increased proportionally to keep t
level of inhibition just after the spike constant. For fast inh
bition ~small tsIE), there is a continuous transition from
fast pulse to a slow pulse asgIE increases. For larger value
of tsIE , the gIE interval for which the slow pulse exist
shrinks. Moreover, a Hopf bifurcation destabilizes the sl
pulse at middle levels ofgIE along this interval. As a result
the slow pulse is stable at moderatetsIE values only in a
small gIE interval; at largetsIE , it does not exist at all.
Interestingly, our numerical calculation of the bifurcatio
lines shows that the HB line intersects the SNB lines at
cusp ~where tsIE543!, and for tsIE values just below the
cusp it runs just above, but very close to, the lower SNB li
Since the eigenvalues corresponding to the HB rem
bounded away from zero as the curve hits the SNB,
point is not a Takens-Bogdonav point~double zero eigenval
ue!. Rather it is the fold-Hopf bifurcation@17# in which there
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is simultaneously a pair of imaginary eigenvalues and a z
eigenvalue.

E. Effects of footprint lengths

For the reference parameter set, we use the valuessEE
5sEI51, s IE5s II 50.5. The rationale behind this choic
of parameters is that excitatory pyramidal cells in gene
and especially the pyramidal neurons of layer V in neoc
tex, have a more horizontally widespread axonal arboriza
in comparison with the inhibitory neocortical neurons@18#.
Except for this qualitative information, the relationships b
tween the four footprint lengthssba are not known. In some
numerical simulations of conductance-based models of e
tatory and inhibitory neurons@19#, propagating pulses wer
obtained fors IE.sEE . We, therefore, consider the effec
of varying the footprint lengths. In Fig. 11~a!, we varys IE
ands II while keeping the equalitys IE5s II , for gIE56. As
s IE and s II increase,n increases andz increases from a
negative value of a few tens of ms to a negative value o
few ms. This implies that for this specific value ofgIE ,
increasing the inhibitory footprint lengths causes the pu
properties to evolve gradually from those of a ‘‘slow’’ puls
to those of a ‘‘fast’’ pulse. To further explore effects of var
ing the inhibitory footprint lengths at variousgIE values, we

FIG. 10. ~a! Regimes of existence and stability of fast and/
slow pulses in thet0I-gIE plane~a! and in thetsIE-gIE plane~b!. In
~b!, tsII5tsIE . The meanings of the lines and the shading are
same as in Fig. 5. Slow pulses can propagate in a wider param
regime if the passive time constant of inhibitory cells is larg
whereas fast pulses can propagate in a wider parameter regim
inhibition decays slowly with time.
1-9
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DAVID GOLOMB AND G. BARD ERMENTROUT PHYSICAL REVIEW E65 061911
show the values ofn andz as a function ofgIE in Fig. 11~b!
for two values ofs IE ands II : 2.5 ~thick lines! and 0.5~thin
lines!. For both cases, there is a transition, from a fast pu
at low gIE to a slow pulse at highgIE . The transition is more
gradual for largers IE ands II , and occurs at higher value
of gIE . These results show that the two types of pulses
be obtained both in cases where inhibition is less widespr
than excitation and in cases where inhibition is more wi
spread than excitation.

As the E-to-I footprint length sEI increases, the puls
form switches from a fast pulse to a slow pulse, as show
Fig. 11~c!. This result can be explained by the fact that wh
the slow pulse propagates,I cells fire much before theE
cells. If sEI is more widespread thansEE , I cells receive
excitatory inputs before their neighboringE cells, and there-
fore have higher chances to fire before theseE cells, and to
slow down the pulse.

F. I -to-I conductance prevents the slow pulse and may cause
irregular pulse propagation

The I-to-I conductancegII was found to strongly affec
the firing properties of networks under steady-state con
tions @20,21#. In order to examine howgII affects pulse
propagation, we study the regimes where various types
pulses can propagate in a two-parameter,gII -gIE plane, as
shown in Fig. 12~a!. In this figure, solid and dotted line
represent saddle-node bifurcation in which slow and f
pulses are terminated, respectively, asgIE values are in-
creased. In addition, pulses with large enoughgII are termi-
nated because the solution violates Eq.~9!. Specifically,

FIG. 11. Effects of varying the spatial coupling decay lengt
The velocity n ~upper panels! and the time differencez ~lower
panels! of propagating pulses are plotted as function of three
rameters. Solid lines represent stable pulses and dashed lines
sent unstable pulses.~a! The connectivity lengthss IE and s II are
varied fors II 5s IE andgIE56. ~b! The conductancegIE is varied
for s II 5s IE52.5 ~thick lines! ands II 5s IE50.5 @thin lines, iden-
tical to the thick lines in Fig. 3~b!#. ~c! The connectivity lengthsEI

is varied.
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dVI@2zn,TI~2zn!#

dt
.0. ~36!

Such a termination is denoted by a dashed line for the s
pulse and by a dot-dashed line for the fast pulse. The bist
regime and the regimes in which either slow or fast pul

.

-
pre-

FIG. 12. ~a! Regimes of existence and stability of fast and/
slow pulses in thegII -gIE plane. Saddle-node bifurcation lines
solid line, termination of the slow pulse; dotted line, termination
the fast pulse. Terminations of solutions because of Eq.~9!: dashed
line, slow pulse; dot-dashed line, fast pulse. Shadings: dark g
bistable regime; light gray, regime in which only slow pulses c
propagate; mesh of diagonal lines, regime in which only fast pu
can propagate; bent diagonal lines, irregular pulses.~b! The velocity
n ~upper panels! and the time differencez ~lower panels! of propa-
gating pulses as functions ofgIE for gII 510 ~I! and gII 550 ~II !.
Line types: thick solid lines, stable traveling pulses; thick dash
lines, unstable pulses; thin dotted lines,~unphysical! values forn
andz that are obtained by solving Eqs.~14!,~15!; dot-dashed lines,
irregular pulses, computed using numerical simulations. The arr
below the abscissa of the upper panels correspond to thegIE values
of Fig. 13. Strong inhibitory-to-inhibitory conductance eliminat
the slow pulses and converts the fast traveling pulses into irreg
pulses.
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can propagate are shaded as in the other two-paramete
ures. The slow pulse can propagate only ifgII is small
enough, and its regime of existence shrinks rapidly asgII
increases. At lowgII value, the slow pulse is terminated a
gIE increases by a SNB, and at higher values, it is termina
because of Eq.~36!. Fast pulses are terminated by SNB~as
gIE increases! for much largergII values in comparison with
the slow pulses. At even largergII values, however, thes
pulses are terminated by the condition of Eq.~36!. The de-
pendence ofn andz on gIE for two values ofgII , 10 and 50,
is shown in Fig. 12~b!. ForgII 510, the fast traveling pulse i
terminated by a SNB, whereas forgII 550, it is terminated
by condition~36!.

What happens beyond the curve on which a pulse is
minated by condition~36!? Surprisingly, we find in numeri-
cal simulations that irregular pulses can propagate. Th
examples of such pulses are shown in the rastergrams of
13. These pulses are characterized by the fact that excita
cells fire almost as in regular traveling pulses, whereas
hibitory cells segregate into two spatiotemporal cluste
Neurons in the first cluster fire before their excitatory neig
bors almost with a constant time delayuz1u. Neurons in the
second cluster fire after their inhibitory neighbors from t
first clusters, and often@as in Fig. 13~A!, gII 550# also after
their neighboring excitatory neurons. The pulses in F
13~A! have the characteristics of a fast pulse: inhibitory ce
fire either less than 1 ms before neighboring excitatory c
or just after them, andn is large@1.45 ms21 in ~I! and 0.91
21/ms in ~II !#. In Fig. 13~B! (gII 510), all the inhibitory
neurons fire before the neighboring excitatory neurons,
the segregation into two clusters is less strict. The pulse
Fig. 13~B! has characteristics of a slow pulse: inhibitory ce
fire tens of ms before their neighboring excitatory cells, a
n is small (0.06 ms21).

In order to define the border of the appearance of
irregular pulses, we carried out numerical simulations
which we started from shock initial conditions and found o
whether a pulse can propagate. The results are shown in
regime shaded by the bent diagonal lines in Fig. 12~a!. We
cannot rule out the possibility that pulses that are excited

FIG. 13. Examples of neuronal firing times during the propa
tion of irregular pulses is shown for the reference parameter set
AI : gII 550, gIE57.5, n51.45 ms21; AII : gII 550, gIE512.5,
n50.91 ms21; B: gII 510, gIE56.5, n50.06 ms. Firing times of
excitatory cells are denoted by solid circles, and firing times
inhibitory cells are denoted by open squares. There arer520 neu-
rons from each type within each unit length (sEE), and spikes of all
the neurons are plotted. The number of neurons in each popul
is N51000 and the total length of the system is 50sEE .
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different initial conditions propagate also outside of this
gime. In Fig. 12~b!, we compared the velocityn and the
average delayz of the irregular pulses~dot-dashed line! to
the values ofn and z of the ‘‘nonexisting pulses’’—the so-
lution of Eqs.~14!,~15! that violates condition~36!. The av-
erage value ofuzu of the irregular pulses is smaller thanuzu of
the ‘‘nonexisting pulse,’’ and, as a result,n is larger.

We can understand the appearance of irregular pulse
using the following argument. The strong mutual inhibitio
between inhibitory neurons at largegII values prevents the
propagation of a regular traveling pulse because when oI
cell fires, it reduces the propensity of its neighboringI cell to
fire afterward. As a result, neighboringI cells tend to fire
with time delays between them.

V. FINITE AXONAL CONDUCTANCE VELOCITY

A. Traveling pulse solution with finite axonal
conductance velocity

The response of a postsynaptic neuron to a firing o
presynaptic cell is delayed because the conductance velo
of action potential in axons is a finite value, denoted here
c. For finite c, the Volterra equations for the firing time
Ta(x) become

VTa5 (
g5 f ,s

gEa
g E

2`

`

dx8wEa~x8!GEa
g FTa~x!

2TE~x2x8!2
ux8u
c G2gIaE

2`

`

dx8wIa~x8!

3GIaFTa~x!2TI~x2x8!2
ux8u
c G . ~37!

Assuming a traveling pulse solution, Eq.~11!, and defin-
ing

n25S 1

n
2

1

cD 21

, n15S 1

n
1

1

cD 21

, ~38!

one obtains forz,0,

VTE5 (
g5 f ,s

gEE
g E

0

`

dxwEE~x!GEE
g S x

n2
D

2gIEE
2zn2

`

dxwIE~x1zn2!GIES x

n2
D

2gIEE
0

2zn2

dx
n1

n2
wIEFn1

n2
~x1zn2!GGIES x

n2
D ,

~39!

VTI5 (
g5 f ,s

gEI
g E

0

`

dxwEI~x2zn2!GEI
g S x

n2
D

2gII E
0

`

dxwII ~x!GIES x

n2
D . ~40!

-
d:
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All the terms in Eqs.~39!,~40!, except for the ‘‘backward’’
term @the third integral in Eq.~39!, representing the effect o
the I cell spike onE cells with smallerx#, are similar to the
corresponding terms in Eqs.~12!,~13!, but the velocityn
there is replaced byn2 . Using Eq.~5!, one can see that in
that ‘‘backward’’ term, there is an additional modificatio
s IE is replaced bys IE3n2 /n1 . Sincen2.n1 , this means
that the length constants IE is ‘‘stretched’’ in this term. Simi-
lar results are obtained for theEI term in the equations fo
z.0.

In networks with excitation only, introducing finite axon
conductance velocityc reducesn, because the termn2 re-
placesn in the dynamical equation@10#. In networks with
excitation and inhibition, however, the factorn1 can play a
role as well, and in principle, decreasingc may increasen, as
shown below.

B. Pulse velocity may decrease withc

Conduction velocity of unmyelined axons is of order
m/s @22,23#. Taking it into account is expected to affe
mostly the fast pulses, whereas its effect on the slow pu
is expected to be very small. Indeed, numerical solutions
Eqs. ~39!,~40! show that in most cases, the velocity of th
fast pulses is reduced ifc is considered to be finite rathe
than infinite. There is, however, an exception that is show
Fig. 14: the fast pulse exists at smallc values but ceases t
exists at a SNB at a criticalc values. For a range ofc values
smaller than this critical value, the pulse velocity decrea
with c. For this particular parameter regime, a slow pulse
also propagate ifc is not too small, and its velocity is almos
independent ofc.

The decreasingn with increasingc may occur in param-
eter regimes in which the fast pulse does not exist foc
→`, but exists ifc is smaller than a certain value of a SNB
At a SNB, a stable branch and an unstable branch of s
tions should coalesce and eliminate each other. In orde

FIG. 14. The velocityn of propagating pulses~upper panel!, and
the differencez between the firing times of inhibitory and excita
tory cells at the same position~lower panel!, as functions of the
axonal conductance velocityc for the reference parameter andgIE

55.4. The velocity of the fast pulse decreases withc near the SNB.
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enable this coalescence, the upper, stable branch sh
‘‘bend’’ toward the lower, unstable branch, and as a resun
should decrease atc values lower than the SNB values. Th
intuitively unexpected result demonstrates the nonlinear
namics nature of the pulse propagation phenomenon.

VI. DISCUSSION

A. Properties of fast and slow pulses

Analysis of models of interacting excitatory and inhib
tory neuronal populations with spatially decaying connect
ity reveals that two types of pulses can propagate. Fast pu
can be regarded as a continuation of propagating pulse s
in networks with only excitatory populations. They are ch
acterized byE cells firing before or just after the neighborin
I cells, and by monotonic increase of the neuronal poten
before the firing. Slow pulses are characterized byE cells
firing substantially after theI cells, and by a decrease in th
potential of theE cells before a subsequent potential increa
until the neuron reaches threshold and fires. As a param
of the system varies, the transition from a fast-pulse para
eter regime to a slow-pulse parameter regime can oc
through a bistable regime, in which both types of pulses
propagate. It can also occur continuously, as the velocity
the pulses decreases and the time lead ofI cell firing in
comparison withE cell firing increases. A third possibility is
that the fast pulse stops propagating as a parameter is va
and a slow pulse appears in a distant parameter regime.
existence of propagating fast and slow pulses with the p
sibility of bistability was reported in Ref.@12#. In this article,
we pursue our investigation of the properties of these t
pulse types and their dependence on network parameter
summarized here.

Fast pulses are robust with respect to initial conditions
they are stable, a strong enough initial shock will evo
them. In contrast, slow pulses are not so robust. Even if t
are stable, an initial shock often does not evoke them. E
if it does, the system dynamics can converge into this s
after a long transient with fast or lurching pulse characteri
tion.

Slow pulses can propagate even without slow excitati
but the parameter regime in which they are stable stron
expands as the level of slowE-to-E excitatory conductance
gEE

s increases. Moreover, slow excitation increases the b
of attraction of slow pulses and the possibility of evokin
them with shock initial conditions. Fast pulses are har
affected by slow excitation, as was shown in models of n
works of excitatory neurons@6#. The parameter regime in
which fast pulse can propagate, as well as their veloc
strongly increase as the level of fastE-to-E excitatory con-
ductancegEE

f increases. In particular, the curve of maxim
gIE andgEI

f for which fast pulses can propagate are conv
as a function ofgEE

f . The dependence of the parameter
gime in which slow pulse can propagate ongEE

f is more
complicated. There are conditions in which increasinggEE

f

supports the propagation of slow pulse, whereas in ot
conditions it prevents propagation.
1-12
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The two pulse types behave differently with respect
changes in the kinetics of inhibitory cells and synapses.
creasing the passive time constant of inhibitory cellst0I de-
creases the regime in which fast pulses can propagate~al-
though only slightly for moderate and larget0I values!, but
increases the regime of slow-pulse propagation. Increa
the decay time of inhibitory conductance increases the
rameter regime in which fast pulses can propagate, and
creases, and even eliminates, the regime of slow-pulse pr
gation.

Increasing the inhibitory footprint~connectivity! ranges
s IE and s II makes the transition from fast to slow puls
smoother, but does not seem to modify the qualitative pr
erties of the behavior. In particular,I cells lead in firing (z is
negative! during the slow pulse even ifs IE ands II are large.
Extending theE-to-I footprint rangesEI tends to transfer the
system from a fast-pulse state to a slow-pulse state, bec
the widerE-to-I connectivity causesI cells to receive their
inputs before theE cells and fire earlier.

Enhancing theI-to-I conductancegII decreases, then
eliminates, the regime in which slow pulse can propagate
high gII values, even fast traveling pulse cannot propag
because of the ‘‘repulsive’’ interaction between inhibitory i
terneurons. Instead, the network exhibits irregular puls
during whichE cells fire almost as they fire during a regul
traveling pulse, andI cell segregate into two groups, whic
fire with two different delay times with respect to the
neighboring excitatory cells. Irregular pulses can be regar
as pulses with ‘‘spatiotemporal clustering’’ of inhibitor
cells. These pulses are different than lurching pulses tha
observed in excitatory networks with delay@10# or in net-
works of excitatory and inhibitory neurons with large, slo
E-to-E excitation and all the other synapses decaying
@12#. Lurching pulses are characterized by periods of activ
propagation followed by periods of silence and no propa
tion. During irregular pulses activity does not stop, and th
are no silent periods. The irregular pulses have spatiotem
ral periodicity, at least approximately. From this respect, th
are similar to lurching pulses.

B. Effects of approximations

The model described here is based on two approxi
tions. First, the subthreshold neuronal dynamics is descr
by an integrate-and-fire model. Second, each neuron is
lowed to fire only one spike. The first approximation do
not seem to affect the main results of this paper, because
key response to the activity of neuron to propagating pu
is that it integrates the response of other excitatory and
hibitory neurons and fires if the time-integrated amount
excitation is strong enough. To further support this claim,
replaced the integrate-and-fire scheme by the Morris-Le
model, a version of a conductance-based model@24#, and
find regimes of fast and slow pulses with bistability betwe
them ~not shown!.

The one-spike approximation is exact in the limit of ve
prolonged refractory period or very strong synaptic depr
sion. In the first case, a neuron cannot fire a second s
before the pulse has completely passed. In the second
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spikes other than the first one do not generate any post
aptic effect. Far from these limits, however, this approxim
tion can have an effect on the dynamical mechanisms of
slow-pulse propagation. In networks with excitatory popu
tions only, the results of this model are qualitatively simil
to the results obtained by simulations of conductance-ba
model ~compare@8–10# with @6#!. In two-population sys-
tems, however, other scenarios can happen. For exampl
our model, the potential of excitatory neurons becomes ne
tive ~hyperpolarized! before it becomes positive again an
the neuron can fire. If theI cells can fire several fast spike
they can prevent theE cell from firing. The model described
in this work can be regarded, therefore, as a paradigm
illuminating a possible mechanism for a slow-pulse propa
tion, which is the advanced firing ofI cells. We have carried
out preliminary simulations of conductance-based neuro
models, in which cells can fire many spikes, demonstrate
transition from a fast pulse to a slow pulse asgIE increases.
As in the one-spike model, inhibitory cells lead substantia
in firing during the slow pulse, but not during the fast puls
and slowE-to-E excitation was found to be important fo
propagation of slow, but not fast, pulses. Further analyti
and numerical investigation of models with more spik
should be carried out to see whether there are alterna
mechanisms for slow-pulse propagation in addition to
mechanism described here.

Even adjacent cortical neurons have a delay of about 2
@25,26#. The effects of this constant time delay on the prop
gation of pulses in excitatory-only network were address
@10#, and it was found that they substantially reduce the pu
velocity. The effects of constant delays on the propagation
slow pulses are smaller because these pulses are slow
without delay, and therefore they are neglected in this w
for simplicity.

C. Dynamical system aspects

The existence and stability of the traveling pulse solut
are studied using methods that resemble the existence
stability analysis of dynamical systems defined by sets
coupled ordinary differential equations~ODEs! @27#. In sys-
tems of coupled ODEs, stability analysis is carried out
assuming a small perturbation in the configuration~or phase!
space and following its evolution in time. Here we assum
small perturbation in the firing time of a neuron at a certa
position and follow its evolution in space. The Volterra re
resentation of the pulse dynamics, Eq.~8!, simplifies the sta-
bility analysis of the pulse. Using this formalism, we obta
an eigenvalue equation~27!, and the pulse is stable if all its
solutions have negative real parts. The stability analysis
therefore reduced to a regular bifurcation problem. There
however, one difference between our system and system
coupled ODEs, which is the ‘‘causality’’ criterion~9! that the
pulse solutions should obey.

In several cases@e.g., Figs. 5 and 10~b!#, we find numeri-
cally that a SNB line and a HB line intersect at a cusp bif
cation. As we noted previously, at the point of intersectio
the linearization has a pair of conjugate imaginary eigenv
uesand a zero eigenvalue. The local analysis of this bifu
cation
1-13



s

xc
of
he
ic

ro

i

na
i

ob
iv

e
i-

ag
b

o
is

la
f
la
-
t

w
et
o
e

at
rs

ow
to
en
d
ib
is

om
in
or
re
e
la

es

-

r-
ke
lar

ibi-
ut

he
or

y a

ried
ac-

J.
ul
No.
nce
it

tion
he
is
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~Gavrilov-Guckenheimer or fold-Hopf! is complicated~see
Ref. @17#, pp. 330–348! and requires further study in thi
particular example.

D. Comparison with other systems and models

Slow pulses are not seen in neuronal networks with e
tation only @6, 8–10, 28–33#, because the mechanism
their generation requires leading inhibition. In particular, t
transition from a fast pulse state to a slow pulse state, wh
may be accompanied by a bistable regime, is a unique p
erty of our system. It has not been observed in models
spatially extended one-dimensional excitable systems w
diffusive coupling@34–36#.

This work is devoted to studying propagation of neuro
activity into a silent regime, as observed experimentally
cortical networks. Different spatiotemporal patterns are
tained when ‘‘waves of phases’’ propagate within an act
region, as described in Ref.@37#.

Propagation of fast and slow pulses was observed
simulations of conductance-based models of networks of
citatory and inhibitory populations, provided that the inhib
tion has a more widespread connectivity than excitation@19#.
The mechanisms responsible for the generation and prop
tion of the various pulses in that system still remains to
explored.

There have been population or firing rate models
propagating waves in one and two populations. A piecew
linear system was analyzed in Ref.@38# and more recently a
general two-population model was studied using singu
perturbation @39#. In Ref. @40#, transient propagation o
waves was numerically simulated in a model for binocu
rivalry. In both Refs.@39# and @38#, only fast waves are de
scribed. Whether bistability can occur in these firing ra
models is unknown.

E. Relations to experiments

Several results of the present model can be compared
data from experiments on cortical slices. First, our theor
cal work shows that slow pulses can propagate even with
slow excitation, but slow excitation substantially enhanc
the parameter regime in which slow pulse can propag
Experiments show that blocking the slow NMDA recepto
blocked the slow pulse or greatly reduced its intensity@5#, is
consistent with the prediction. Second, our analysis sh
that there can be an abrupt transition from a fast pulse
slow pulse as inhibition is increased. Preliminary experim
tal results@11# confirm this prediction. Third, the propose
mechanism for slow-pulse propagation demands that inh
tory cells fire before their neighboring excitatory cells. Th
prediction can be tested by dual intracellular recording fr
adjacent excitatory and inhibitory neurons. Fourth, accord
to the theory, during the slow-pulse propagation, excitat
cells should be hyperpolarized by inhibitory cells befo
their potential increases again and they can fire. This th
retical result can be tested experimentally using intracellu
recording. Note, however, that the shunting~and not hyper-
polarizing! nature of certain types of inhibitory synaps
may modulate this behavior. Fifth, if the total fastE-to-E
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synaptic conductancegEE
f is substantially increased, for ex

ample, during certain types of learning tasks@15#, the I-to-E
inhibition and theE-to-I excitation should increase conside
ably in order to prevent the propagation of fast, epilepticli
pulses. This prediction can be tested by dual intracellu
recording between neurons from the excitatory and inh
tory populations, and comparing the results with or witho
learning. Sixth, strong, and even moderate values ofI-to-I
inhibition prevent the propagation of the slow pulse. On t
other hand, strongI-to-I inhibition seems to be necessary f
generating stable states of persistent activity@20,21#. In ex-
periments, the slow pulse is sometimes accompanied b
prolonged state of persistent activity@5#. Theoretical and ex-
perimental investigation of such systems should be car
out in order to examine how slow pulses and persistent
tivity can occur in the same system.
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APPENDIX A: ELEMENTS OF THE STABILITY MATRIX

Substituting Eqs.~5!,~6! in Eqs.~23!–~26,! we obtain for
z,0,

AEE~l!

5(
g

1

2
gEE

g t0En2H 1

~sEE1nt0E!~sEE1ntsEE
g !

2
11lsEE

@sEE1nt0E~11lsEE!#@sEE1ntsEE
g ~11lsEE!#

J
2AIE~0!, ~A1!

AIE~l!5
gIEt0En

2~t0E2tsIE! H expS z

t2I
1lnz D

3F 1

s IE1ntsIE~11ls IE!

2
1

s IE2ntsIE~12ls IE!G2expS z

t0E
1lnz D

3F 1

s IE1nt0E~11ls IE!
2

1

s IE2nt0E~12ls IE!G
1expS zn

s IE
D F 1

s IE2ntsIE~12ls IE!
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2
1

s IE2nt0E~12ls IE!G J , ~A2!

AEI~l!52(
g

1

2
gEI

g t0In
2expS zn

sEI
D

3
11lsEI

@sEI1nt0I~11lsEI!#@sEI1ntsEI
g ~11lsEI!#

,

~A3!

AII ~l!52AEI~0!2
1

2
gII t0In

2H 1

~s II 1nt0I !~s II 1ntsII!

2
11ls II

@s II 1nt0I~11ls II !#@s II 1ntsII~11ls II !#
J .

~A4!

Similar equations are obtained forz.0.

APPENDIX B: Va„X,0…

For z,0, Eq. ~35! becomes

VE~x,0!5 (
g5 f ,s

CEE
g 2CIE , ~B1!

VI~x,0!5 (
g5 f ,s

CEI
g 2CII , ~B2!

where

CEE
g 5gEE

g t0EsEEn

2~nt0E1sEE!~ntsEE
g 1sEE!

expS 2x

sEE
D .

~B3!

For x.2zn,
ci.

u-

06191
CIE5gIE

t0Es IEn

2~nt0E1s IE!~ntsIE1s IE!
expS 2x2zn

s IE
D .

~B4!

For 0,x,2zn,

CIE5gIE

t0En

~t0E2tsIE! F ntsIE
2

s IE
2 2n2tsIE

2
expS x1zn

tsIEn D
2

nt0E
2

s IE
2 2n2t0E

2
expS x1zn

t0En D
1

s IE~t0E2tsIE!

2~s IE2nt0E!~s IE2ntsIE!
expS x1zn

s IE
D G ,

~B5!

CEI
g 5gEI

g t0IsEIn

2~nt0I1sEI!~ntsEI
g 1sEI!

expS 2x

sEI
D , ~B6!

CII 5gII

t0Is II n

2~nt0I1s II !~ntsII1s II !
expS 2x2zn

s II
D .

~B7!

APPENDIX C: NUMERICAL TECHNIQUES

For solving Eqs.~14!,~15!, we extractz from Eq. ~15!.
After substituting the term forz in Eq. ~14!, we obtain a
single algebraic equation forn, which we solve numerically
in the interval ofn values for whichz is guaranteed to be
negative. Similarly, we extractz from Eq. ~16!, substitute it
in Eq. ~17!, and solve the resulting equation in the regime
which z is guaranteed to be positive.

For calculating stability, we follow the solutions of Eq
~27!,~28! using XPPAUT @41#. This calculation is carried ou
separately forz,0 and forz.0.
,
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