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Slow excitation supports propagation of slow pulses in networks
of excitatory and inhibitory populations
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We study the propagation of traveling solitary pulses in one-dimensional networks of excitatory and inhibi-
tory neurons. Each neuron is represented by the integrate-and-fire model, and is allowed to fire only one spike.
Two types of propagating pulses are observed. During fast pulses, inhibitory neurons fire a short time before or
after the excitatory neurons. During slow pulses, inhibitory cells fire well before neighboring excitatory cells,
and potentials of excitatory cells become negative and then positive before they fire. There is a bistable
parameter regime in which both fast and slow pulses can propagate. Fast pulses can propagate at low levels of
inhibition, are affected by fast excitation but are almost unaffected by slow excitation, and are easily elicited by
stimulating groups of neurons. In contrast, slow pulses can propagate at intermediate levels of inhibition, and
are difficult to evoke. They can propagate without slow excitation, but slow excitation makes their propagation
substantially more robust. Fast pulses can propagate in a wider parameter regime if inhibition decays slowly
with time, whereas slow pulses can propagate in a wider parameter regime if the passive time constant of
inhibitory cells is large. Strong inhibitory-to-inhibitory conductance eliminates the slow pulses and converts
the fast traveling pulses into irregular pulses, in which the inhibitory neurons segregate into two groups that
have different firing delays with respect to their neighboring excitatory cells. In general, the velocity of the fast
pulse increases with the axonal conductance velagityut there are cases in which it decreases wittive
suggest that the fast and slow pulses observed in our model correspond to the fast and slow propagating
activity observed in experiments on neocortical slices.
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[. INTRODUCTION tatory and inhibitory populations with fast synapses in an
abstract form[11] and in a Lette{12]. We found that fast

Epilepticlike discharges can propagate in cortical sliceulses can propagate in those systems either without or with
when the strength of inhibition is reduced by only 10—20 %small levels of inhibition. In addition, we discovered that
[1,2], but they cannot propagate in healthy cortical slicesslow pulses can propagate at intermediate levels of inhibi-
under physiological conditions when inhibition is intact. In- tion, but only in a restricted parameter regime. There is also
hibition shapes the form of these pulses, and reduces thedr bistable regime in which the two pulse types can propagate.
velocity [1]. Recent experiments in roder,4] and ferrets The existence of slow and fast pulses in the model, as well as
[5] revealed a different type of propagating pulse in corticalin experiments, raises the following theoretical questions:
tissue when inhibition is intact or partially reduced. This ac- (1) How is propagation mediated by excitatory synapses
tivity is nonepileptic, with firing rate of individual neurons with various kinetics? Can slow pulses propagate in a more
that is typically low (<10 Hz). The generation and termi- robust manner if the system includes slow excitatory syn-
nation of this propagating state may account for the generaapses?
tion of a subset of cortical rhythm during sleep. In intact (2) What are the types of transition from fast to slow
ferret slices, the propagating velocity is slow, about 1.1 cm/gropagation as inhibition is enhanced?
[5]. When inhibition is blocked, the activity becomes epilep- (3) How is the initiation of the pulses affected by initial
ticlike and the velocity becomes fast, about 9 cm/s. Theconditions?
propagation of slow pulses depends on the existence of slow (4) How does the appearance of the two pulse types de-
N-methyl-D-aspartatd NMDA-mediated excitation. When pend on the strength and the connectivity ranges of the vari-
this excitation is blocked, the slow pulse often, but not al-ous synaptic coupling conductances?
ways, cannot propaga{®&]. In contrast, blocking the slow (5) How do time constants of inhibitory cells and syn-
excitation does not prevent the propagation of the fast pulseapses affect propagation?

[6]. Blocking the fast a-amino-3-hydroxy-5-methyl-4- (6) What are the effects of finite axonal velocity?
isoxazolepropionic acidAMPA-mediated excitation pre- To answer these questions, we further analyze our simple
vents the appearance of both fast and slow pUlSgg. model of a network composed of excitatory and inhibitory

A large amount of theoretical work has been devoted taneurons. The single cell is represented by a simplified ver-
networks composed of excitatory neurons only with spatiallysion of the integrate-and-fire neuronal model, in which a
decaying connectivity6—10. We studied networks of exci- neuron is allowed to fire only one spike, and then it is silent
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A. B o(—trey) =0
F: t, exp—urT a =,
Slon . @pa(t)=1 Tspa * ®)
e i
E E 0 otherwise.
; 2655 ]
Fast, For the excitatory coupling, we consider two types of synap-
Slow tic current: a fast(f) current and and a slows) current,
corresponding to the contribution of AMPA and NMDA syn-
I 52 O 1 aptic receptors in a biological network, respectively. The
U w20y & ' function ag,(t) and the decay timegg, have a superscript

v={f,s} denoting whether the decay of the excitatory cur-

FIG. 1. Schematic diagram of the model architectéagNeu-  rent is fast or slow.
ronal populations and synaptic typéb) The one-dimensional ar- The network architecture is shown in Figbl The con-
chitecture of the network. tributions to the synaptic current from the excitatory and
inhibitory populations are

forever. This model, which is exact in the limit of a very long

refractory period or very strong synaptic depression, is ame- lsynga(X,t)= E ggaJ'w dx’ wg, (x—x")

nable to analytical treatment. The velocity of traveling pulses y=fs -

in this model, their stability, and the delay between the firing X al (t—Te(X')) &)
Ea ,

times of neighboring excitatory and inhibitory cells during
the pulse, are calculated analytically. In particular, we inves- .
tigate the role of the slow excitation in supporting the propa- Isyn,la(xrt):glaf dX' Wy o (X—X") a;,(t—T,(x")),
gation of the slow pulse. —

The paper is organized as follows. The model is presented (4)
in Sec. Il. The mathematical analysis of existence and stabil-

ity of traveling pulse solutions and the calculation of veIocityWher? ?.Ba is :Ee synapltict_ cou_lggng str;znlg;[jh frorg the f
and lag between excitatory and inhibitory cells during the{)opua;‘on tio ?ranp?rﬁ)u anlondi i ﬁc(séparlla tiept;:n terr]i(r:ﬁ 0
pulses are described in Sec. Ill. Based on this analysis, w € SY \apticstrength o stancesynaptic footp
; i X . shape’) is given by
investigate the properties of fast and slow pulses, neglecting
axonal conduction velocity in Sec. IV. Effects of finite axonal

velocity are described in Sec. V. The results and conclusions Wa(X) =

are discussed in Sec. VI. 203,

exp(— x|/ og,). (5)

The spatial variable< is dimensionless and represents the
Il. THE MODEL distance in terms of the excitatory footpring that is set to

1. As a result, the velocity has units of ms?.
A. Model definition

We consider a one-dimensional network of excitatdty B. Reference parameter set
and inhibitory (1) neurongFig. (a)]. A neuron is described In the following, we study the model in its general form.

.by Its membrane poter}tlala(x,t), o= El and its .dynam- .Numerical examples, however, are shown for a particular set
ics is governed by the integrate-and-fire scheme in the excit- w .
) of parameters, called the “reference parameter set,” with

able regimg 9] o —130 T s _ s

ToE= 7ol ms, TSEE TstI -0 Ms, Tsee™ TsEl

AV 4(X,t) V,(x,t) =50 ms, 74g=17s,=8 MS, gee=12, gg=10, oge=1,

- HlongaX D) ~lgynia(x ). (D) g=52 0g=05, gL, =30, g§, =0, oe=1, gy =2, oy,
=0.5,V;g=Vy,=1. These parameters are used unless stated
otherwise. Since the slof&to-l excitationg, does not have

Here, 7o, is the passive membrane time constant of the neu@ strong effect on the network dynamics, we consider it to be
ron, andlsyng, (resp.lgn;,) is the total synaptic current Z€ro-.
contributed by the excitatorfresp. inhibitory population.

When the membrane potential of a neurdrreaches a lI. ANALYSIS OF TRAVELING PULSE SOLUTIONS
thresholdV+,, the neuron fires a spike, after which it be-
comes silent forever. This “single-spike” model is exact in
the limit of very long refractory period or very strong syn-  In order to analyze the dynamics, we define the Green’s
aptic depressiofi13]. In the following, we denote by, (x)  functionGg,(t) for t>0 as
the time at which a neuron located»afires. A presynaptic
spike induces a postsynaptic current that is proportional to M: _ Cpa
the functiona,(t), where dt T0a

ot Toa

A. Volterra representation

+ag,(t) (6)
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andGg,=0 for t<0. The functionsGg, have also a super-

script y. Fort>0, we obtain

T o
Gpa(t)= %%[exp( —t/70q) — €XH — t/ Tep,) ]

O

()

The integrated form of Eqsl), (3), (4) is given by the two

\olterra equations fow=E,I:

Vio= 3 02| dxwe ) BLITL 00~ Tetx—x)]

y=f,s

_g|afjode,W|a(X,)G|a[Ta(X)_T|(X_X,)]. (8)

In addition, the neuronal voltage should be below threshold

before spiking(“causality criterion”),

V, (x,tH)<Vy, forall t<T,(x), a=E,l. (9

A necessary, but not sufficient, condition for this is

dV, [ xt]

dt >0,

t=T,(x)

a=E,l. (10)

B. Existence of traveling pulses

We consider a traveling pulse solution with velocity
Without loss of generality, we assume that 0. The firing

time of an inhibitory cell lags after the firing time of an

excitatory cell at the same position gy

X X

Te(X)=—, Ti(x)=—+{. (11)
14 14

Negative{ means that ah cell fires before a neighboring

cell. Substituting Eq(11) into Eq. (8) yields

V1,=BL,+B%,~ B, (12)

where

©

dX Wgo(X+¢ VSBQ)GYQ(E). (13

Y =7
Bﬂa gﬁa fo v
We definesg, = (s,—Sp)/2, wheresg=1 ands;=—1. Sub-
stituting the expressions f@z, andwg, in Egs.(12), (13),
we obtain two algebraic equations ferand £, for negative

Z,

Tog V OEE 1

Vig=5————F—— ge——
2(v et o) 5 (v 7leet ogp)

2
g ToeV Tog ¥ exr{ ¢ )
— 0 —
(Toe— 7siE) | v? 15— 0 ToE

2
_ Tsie? ex’{ 4 )
2 2 2
Ve TgET OlE TsIE
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(Toe— Ts1E) T1E '{57/)
+ xg — ||, (14
2(v 1oe— o) (v Tgie— 1) O 14
Tol V Og| gV) 1
Vi=—————exp — r—
" 2w ot og) F<0'EI Ey gEI(VTgE,+0'E|)
Tol V Oy (15)

~an 2(v 1o toy)(vrgtoy)’

Similarly, for positiveZ, we obtain the following two al-
gebraic equations for and {:

Tog V OEE 1

Veg=5—————— e
2(v Tt o) (v 7lget oep)

g ToEV O ex%_éﬁ/)
'E2(v o+ aig) (vTgiet iE) o’

(16)
V=S g Tol V 0V 4‘?)
™ Y gEl(To|—7';’E|) VZTCZH—O'é, 7ol
o (el )y eXp( __g)
VZ(TgEOz_O'E 2
(To1— T2E) Ol '{_57})]
+ ex
2(v o — o) (v 7ig— 0E) OEl
Tol V Oy (17)

_9”2(7/ ot o) (vrg o)

Propagating pulses exist only if Eq&l4), (15 have at
least one solution with <0, or if Egs.(16), (17) have at
least one solution with >0.

C. Stability of traveling pulses
Stability of the continuous pulses is calculated by follow-
ing the growth rate of a small perturbation

Te(X)=x/v+ 0g(X), (18

T,(X)=x/v+{+ 6,(X). (29

Substituting these perturbations in E§), and keeping only
the first-order terms i, 6,, we obtain two equations for
a=E,I,

0= > g%aJ
y=f,s

{VSg,

0

X'
dX,WEa(X,)G’%a(7 - g SEa)

o

X[ 04(x)— 0E(X_X,)]_glaf

ng|a/

dx'wy,(x")

!

X7_§S|a)[(9a(X)_0|(X_X’)],

X G/, (20)
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where

G'(t)=dG(t)/dt. (21) 4
Assuming that the perturbations evolve a8g(x) ?’J
= Ogpexpx) and 6,(x)= 6,,exp(\x), yields the matrix _g
equation €2

=
Agl(N)6z0=0, 22
(22, PoaM) g0 (22 0
0 05 1 15

where v

o X FIG. 2. The minimab, for which thel cells are recruited to the
Aee(N) =2 QEEJ dx WEE(X)G'EE<—> (1—e™) pulse as a function of. The reference parameter set is ugextept
7 0 v for gf,); in particular,g,=0. As v—, the minimalgf, value,
o X 1.253, is given by Eq(33).
_gIEJ dXWIE(X)GI,E(__g)1 (23
v v that if thel cells are quiesceni; is determined solely from
the interactions between ttiecells[Eq. (14)],

AIE()\):glEf:}dXWIE(X)GIIE(é_g)e_)\Xi (24

ToeVOEE 1
Vip= g le— . (29
- X 5 2(vroet o) 4Tis gEE(VTsyEE+ =) (
= — Y 'Y | — —\X
Aei(M) 27“ gE'ngdXWE'(X)G el tefe The cells do not fire if their voltage is below their thresh-
(25) old, Vq, for all t>0. Without loss of generality, we consider
a traveling excitatory puls&z(x)=x/v affecting an inhibi-
B * Ly [ X tory neuron located at=0. The voltage of thid neuron is
AuM)=2 gk f W 0CTE ;““) given by Egs (D), (3), (4), and(®),
o0 X «© X
—g”f dxvv”(x)G(,(;)(l—e“). (26) Vi(0t)= Zfsgéj t dxweg () G| t+]. (30
0 y=1, —tv
Equation(22) has nontrivial solutions if Fort<0, V, is
defA(N)]=0. (27 To VO ty 1
V00 = e ) S ot
The valuex=0 is always a solution of the characteristic o TEl Elfy=ts ~(v7gg 1t og)

equation(27) because of the translation invariance. Apart (31)

from this marg|_nal stablh_ty, the tr_avellng pulse is stable if all and fort>0, it is

the other solutions of this equation have negative real parts.

The values ofAz,(\) for Egs.(2), (5) are given in Appendix

A. y , V(0 =v1y 2 0
A pulse can lose stability at a saddle-node bifurcation y=f.s

(SNB), where thex =0 solution to Eq(27) is a double zero,

— VTéeXF( —t/7q)

(10— 72e) (0 1+ V7o) (0g — V7))

namely, v(tde)?exp —t/ 1)
d{defA(\)T}Hd\|,_o=0. (29) (101 = m¢e) (o T v1le)(og —v7le)

Alternatively, a pulse can lose stability at a Hopf bifurcation n oeieXp — vt/ og)) _ 32)

(HB), where Eq.(27) has two imaginary solutions with 2(og—vro) (o — v7ig)

A=TFlw.

Thel cells are recruited by the traveling pulse if there is a
D. Activity of | cells value oft such thatV,(0t)=Vy,. The dependence of the

. : . minimal g&, for which thel cells are recruited om is shown
We have studied the existence and stability of the travel- 9ei

. . s

ing solution, Eq.(11), under the assumption that bdghand ?Or'g;if(;rnghes r?‘gretr;](;en?iiri;rzftfe riﬁmtwhlch 9e1=0).

| cells participate in the firing. With smadi,, y=s,f, how- v 98 =" 9ei

ever, there may be a situation in which only tBeells fire, f

whereas thel cells are quiescent. In order to determine by o= TsEl
. . . (gEl)mlmmaI/ TI

whether for particulag?, the | cells are excited, we realize 7ol

£t
7ser (Tser™ 7o1)

(33
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As seen in Fig. 2, the values 0§¥,)minma for v of order A.gl=15 B. 04=30 C.gi=45

1 ms ! are close to that asymptotic value. Velocitﬁ\ § 2
v (1/ms)

E. Voltage profile o 1 1

For a traveling pulse, the voltage profile of tBeand | i -
neurons that have not fired is determined by the voltage pro- -

. . 0104 | i i
file of the neurons at timé=0, 0054 l ] L\ ] \K
V,(x,1) =V, (x—1t,0), a=E,L. (34) OO T e
o> 0™ 07 O
We calculateVg(x—»t,0) in the domain &x=<« and G(ms) | 4 0 stable
V,(x—rt,0) in the domain— {v<x=o using Egs(1), (3), i om0 st
(4), and(6) and obtain 20 : 201 201 ——== 10 unstable
o N A: . . - . . .
Va(X,O): E g%af dX’WEa(X+X/)GEa(7) 0 1%nz 2 0 1%IE % 0 1%uz %
y=f,s 0

" X’ FIG. 3. The ve_locityv of propagating p_u_lse(su_pper anq mi(_ﬂdle
_ng dX’Wm(X“‘X')Gm(— _ {). (35) panels, gnd the difference between. t.he firing times of |nh|t?|tory
Ly v and excitatory cells at the same posititmwer panelg as functions
of inhibitory-to-excitatory synaptic strengtlye for the reference
The values oW ,(x,0) for (<0 are given in Appendix B. parameter set and three values of the excitatory-to-inhibitory syn-
Numerical techniques used throughout this article are deaptic strengthgt,: (a) gt,=15. (b) g&,=30. (c) gf,=45. Thick

scribed in Appendix C. lines represent pulses witlig =10, and thin lines represent pulses
with gg=0. Solid lines represent stable pulses and dashed lines
IV. PROPAGATION OF PULSES IN NETWORKS represent unstable pulses. In the middle panels, which are expan-
WITH INHIBITION AND SLOW EXCITATION sions of the upper panels, Hopf bifurcations are denoted by open

circles. Bistability of fast and slow pulses is observed for moderate
The main goal of this paper is to study the effects ofvalues ofgf, andge .
inhibition on pulse propagation. Therefore, we emphasize the
effects of the parameteg,e and study how it modifies the slow pulses can propagate. For all thg- and ng, values,
System dynamiCS under various conditions. Effects of Othefhe time diﬁerencd§| increases ag decreases’ and there-

parameters are also studied. fore the time lead of thé cell is larger for the slow pulse
than for the fast pulse.
A. The dependence of the existence and stability of slow For all the parameter regimes we have examiredells
and fast pulses on inhibition and slow excitation fire before or slightly after thé cells during the fast pulse,

and the values of are small positive or negative values, of
order 1 ms. In contrast, during the propagation of the slow
reference parameter set, three valuegfgf, and two values pulse,E cells fire well after thd cells, and{ is negative, on

£ a5 0 (thin I d 10(thick lines. We first d i the order of a few tens of ms. The slow pulse can therefore
of gee: O (thin lines an (thick lines. We first describe be viewed as a front dfcells’ spikes pushed from behind by

. . _ f .
the situation folgge=0. At low g, values, there is only one o £ cells' spikes: because eaghcell receives strong inhi-
stable branch of “fast” pulses, which terminates at a SNB.pition from neurons in front of it, the pulse propagates

At intermediateg’, values, bistability exists, and at interme- slowly.

diate g; values both the fast pulse and the slow pulse can |n addition to the branches of solution shown in Fig. 3,
propagate. Theg,e regime in which bistability exists iS two other unstable branches may appear. In one of them,
pretty restricted, because the slow pulse is terminated by @xcitatory cells lead in firing. These branches do not usually
HB. At large g, values, there is a crossover between fastaffect the system dynamics, except for within specific param-
pulses and a slow pulses @g increases. The slow pulse is eter regimes that will be described below.

still destabilized by an HB at a certafz value. Whereas The voltage profile of neurons that have not fired yet at
our theory cannot determine what happensgigrlarger than  time t=0 is shown in Fig. 4 for the reference parameter set.
its value at the HB, extensive numerical simulations indicatewith this set of parameters, the fast pulse and the slow pulse
that no pulse can propagate in that regime. This situation isoexist. During the fast pulse, the membrane potential of a
different from the case of excitatory networks with delay neuron at a positiorx decays monotonically with distance
[10], where the HB leads to the propagation of discontinufrom the pulse. During the slow pulse, the potential of the
ous, “lurching” pulses. Increasingge to 10 modifies the cells also decays monotonically. However, during the slow
v-g;g curve in two aspects. First, the branch in the bifurca-pulse, the potential of th& cell first decays rapidly and
tion diagram corresponding to the slow pulse extends foreaches a negative value. Then, it increases to positive values
wider g,e region. Second, there is no HB. As a result, theand then decreases again. Note that a mirror image of the
slow E-to-E excitation increases the regime where stablesame profile, with the abscissa stretched by a factor of 1/

The dependence of (upper and middle pangland ¢
(lower panels on g,z is shown in Figs. @&-3(c) for the
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A. Fast Pulse B. Slow Pulse A.g5=0
R ' 204
‘\ #  Slow Pulse
\ —— ECells 151 @ Bistable
A 7~ [ Cells : % Fast Pulse
P S 0l S SNB
- Fast Pulse: Max
---- Slow Pulse: Min
-0.51 51 CT. —— Slow Pulse: Max
0o ! 5 o ! 5 e
oy Oee Y Oee B. g5.=10 —-— Slow Pulse: Max
204 —— - Minimal g for
FIG. 4. The potential¥ of excitatory neurongsolid line) and Ifiring
inhibitory neurons(dashed ling that have not fired yet at time 154
t=0 are plotted as a function of their position. The reference pa- " c
rameter set is used; in particulgie =5.2 andgg = 10. (a) Poten- o 4] %
tials during the fast pulsdb) Potentials during the slow pulse. g N 8
® [
describes the temporal behavior of the pulse at a constant 515 3
positionx. This means that during the slow pulse, each ex- 0 A 2 o é 40 é
El

citatory neuron is first excited, but then is affected by strong
inhibition and its potential becomes negative. Only when the £ 5 Regimes of existence and stability of fast and/or slow
pulse continues to propagate and the effect of inhibition igyyises in thegl,-g,c plane for the reference parameter set and
diminished, is the neuron again affected by excitation and sgs_—¢ (a) and g2.=10 (b). Saddle-node bifurcation curves are
can reach threshold and fire. denoted by thick lines, dotted line, the maxinga! value of the fast
Plotting the voltage profile as a function &f(Fig. 4  pulse; dashed line, the minimg|g value of the slow pulse, solid
demonstrates a case in whiehand { are different for the |ine, the maximab,e value of the slow pulse. The Hopf bifurcation
fast pulse and the slow pulse, but the values¢fis similar.  curve in(a), is denoted by the dot-dashed line. Such a curve does
Since the footprint ranges in the model are of order 1, thenot appear inb). For g§, value smaller than the thin long-dashed
value|v¢| should be of order 1 or less, otherwise the spikedine, only excitatory cells fire, and inhibitory cells are quiescent.
emitted by neurons from one population do not affect neu<Shadings: dark gray, bistable regime; light gray, regime in which
rons in the other population. Hence, lowerenables/ to  only slow pulses can propagate; mesh of diagonal lines, regime in
have larger values, that can be, in principle, negative or posWwhich only fast pulses can propagate; “continuous transitifr’
tive. “C.T.” in (a)], regime of continuous transition from a fast-pulse

To further demonstrate thag . increases the regime of behavior forg,e=0 to slow-pulse behavior agg increases. In all
slow-pulse propagation, we present in Fig. 5 tWo_the other white regimes, no pulse can propagate. The cusps of the

dimensional bifurcation diagrams in t@IErQhE plane, for SNB lines are denoted by an(feft) and by a® (right). The three

s _ . s : arrows below the abscissa (b) represent the three valuesgff, in
gE_E*O [Fig. S@)] and gEfE* 10 [Fig. S(b)]. .The fast pulse Fig. 3. Slow excitation increases considerably the parameter regime
exists forg;e=0 for all g, values. Three lines of SNB are i which slow pulses can propagate.

plotted. The lower SNB linddashegl corresponding to the
minimal g,e value above which the fast pulse can propagate,
is bounded by two codimension-2 cusp bifurcatigig].

The cusp at lowngt,, denoted by the asterisk, produces the 5 ::;Z;:Ise
slow-pulse branch as a “ripple” on an unstable solutjere % FastPulse
Fig. 3(a), thick ling]. The cusp at higrng,, denoted by the SNB

diamond, connects the slow and the fast branches, and elimi-
nates the unstable branch between them. At higjiewal-
ues, there is a continuous crossover between the fast branch

-~ Fast Pulse: Max
---- Slow Pulse: Min
— Slow Pulse: Max

and the slow branches a§, increases. Fogi-=0, but not HB

for ggg=10, there is a line of HB representing the maximal : : % —— Slow Pulse
g,e above which the slow pulse is unstable. Comparing pan- 0 :

els, Figs. %a) and Jb), shows that in Fig. &), the slow- 0 10 20

pulse regime, and also the bistable regifimewhich the two
pulse types can propagatehave larger areas in the two- £ g Regimes of existence and stability of fast and/or slow
parameter space for two reasons. First, the slow branch i ses in thegie-g,e plane. The meanings of the lines and the
terminated by a SNB at highefie values. Second, the SIoW  shading are the same as in Fig. 5. In the white regime bounded by
branch is not destabilized by a HBG§ is large enough.  the HB line(dot-dashey the SNB line(solid) and the ordinate, the

The contribution of the sloviE-to-E excitation to the ex-  slow pulse exists, but it is unstable. Fge values above the solid
tension of the regime of stable slow pulses is also shown ifine, no pulses exist.
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the gg-g,e plane in Fig. 6 for the reference parameter set 95:=0 9g=10
(g,fE|=30). The HB destabilizes the slow pulse only fe A 2 C

values smaller than a certain valdehich is ggg=9.24 40 ﬂﬁ .

here. Note that for a fixedygg value just below that finite

value, the slow pulse is stable in two disconnected intervals
of g,g, between which it is unstable. The robustness of thex 20+ .
slow pulse at largegg g values can be explained by the fact ; . E cells
that strong, prolongede-to-E excitation helps excitatory ) a | cells
neurons to overcome the inhibition imposed on them by the 0 — T . —

inhibitory neurons that fire first, such that those excitatory B D
neurons can eventually reach threshold and fire.

V/6,=0.085

40 1 =

B. Response to shock initial conditions u e
- - . o V/6=0.072
Even if, for a particular set of parameters, a pulse exists 5| i =

and is stable, it does not mean that it can be generated usin PFE'DE'
a particular choice of initial conditions. Since the space of f

initial conditions has, in principle, infinite dimensions, we . I , I
cannot determine the volume of the basins of attraction for a 0 200 400 0 200 400
particular propagating state in that space. Instead, we choos t (ms) t(ms)

to use one type of initial condition, the “shock” initial con-
dition. All the neurons in a region<9x<2.5 were excited at

t=0, and we followed which type of pulse is generated, if at
all. The shock initial condition was chosen because it repli- VelocitOy1 ]
cates the ex_pg_rimental situfation, i|j which propaggting Qis— v(1/ms),
E:g]arges are initiated by a brief spatially localized stimulation 0.05.
The system’s response to shocks is described in Fig. 7 fo
two values ofggg: 0 [Figs. 7a) and 7b)] and 10[Figs. 7c) 0 ‘
and 7d)]. We compared the responses for two values of 0 15

We keep all the parameters at their reference values except

for g,z , which we tuned in order to obtain the desired value FIG. 7. Network responses to a “shock” stimulus are shown in
of v. Theseg,e andv values are shown in Fig(&, which is rastergramg(a)—(d)]. Firing times of excitatory cells are denoted

the same as Fig.(B) (middle panel. For QSEEZO and v by solid circles, and firing times of inhibitory cells are d_en_oted by
—0.085 ms! [Fig. 7(a)], the slow pulse is the only attract- open squares. There age= 20 neurons from each type within each

ing pulse. A shock stimulus initiates a transient fast pulse tha"! 'eln?tthd("ETEg' and Ssikes fOf only one out ofhevery zlotpmr_ons
propagates along a considerable distance before it switch8ES P/Ot€d. - he number of neurons in €ach populalloris
to the slow pulséat aboutx=30). Fory=0.072 ms 1 [Fig. =1000, and the reference parameter set is used. The network is

. - initiated by an abrupt activation of all the excitatory and inhibitor

(b)) the_ slow pulse is also the iny attrgqtmg pulse, but eurons 03;1 the “Ief?’ (0<x<2.5). Simulations are zarried out fory
shock stimulus generaslteg a chahzed activity only that doeg, " -1 s ofggg and two values ofv: (8) giz=0, »=0.085
nqt propagate. Whegge is raised to 10, the same shock (gie=4.8); (b) g&c=0, v=0.072 @e=5); (0 gSe=10, v
stimulus generates a slow pulse for the two valuesvof 0 085 ,.=6.08); (d) gic=10 v=0.072 @,c=6.51). InE, the
beyond a small interval of fast propagatiffig. 7(c)], or  values ofg, and the velocities' of the slow pulses are shown. The
after two periods of “lurching” activity[Fig. 7(d)]. curves, corresponding to slow pulses, are identical to the curve

The effect of the slow excitation can be explained intu-shown in Fig. 8b) (middle panel Thick lines represent pulses with
itively as following. After a shock stimulus, in order to gen- gi =10, and thin lines represent pulses withz=0. Solid lines
erate a slow pulse, the firing times of the neurons shouldepresent stable pulses and dashed lines represent unstable pulses.
reorganize such that tHecells fire before theée cells at the  The circles labeleda)—(d) correspond to the value gfg andv in
same position. If there is slow excitation, a cell receives inpanels(a)—(d). Without slow excitation, it is difficult to evoke slow
hibition and excitation due to the fast inhibitory and excita-pulses, even if they exist and are stable.
tory synapses, and then, for a prolonged amount of tim
slow excitation that enables it to overcome the inhibition an
fire. Note that when the fast pulse is the only attractor, shoc
initial conditions generate it with or withowz ¢ for all the
cases we examingghot shown).

zro the generation of epilepticlike discharddg, correspond-
Ing to the fast pulses in our model. The strength of fast
AMPA-mediated E-to-E excitatory conductance may
change as a result of learning. For example, &aat. found
indirect evidence for an increase gL during olfactory
learning in rats on the order of tens of percerts]. Despite
this increase, cortical slices do not become more epileptic
In the cortex, there is a delicate balance between excitaafter learning. A possible explanation to these facts is the
tion and inhibition, and deviations from this balance can leads-to-l excitation and/or the-to-E inhibition increase as

C. Effects of strength of fast excitation
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801 % Slow Pulse @
# Bistable 80 -
& Fast Pulse Slow Pulse
SNB # Bistable
- Fast Pulse: Max & Fast Pulse
c%4407 === Slow Pulse: Min _5 SNB
— Slow Pulse: Max E ——= Fast Pulse: Max
HB w40 - ,‘_‘9 ==== Slow Pulse: Min
—-— Slow Pulse © @
3 HB
S —-— Fast Pulse
% 40 323 é ——- Minimal g}, for
g I firing
0 F—_ AXRRKRH LR, KL @ . - Mlnlmal géE for
FIG. 8. Regimes of existence and stability of fast and/or slow 0 10 20 E firing
pulses in theg,fEE-gIE plane. The meanings of the lines and the géE
shading are the same as in Fig. 5. The dotted line, below which the
fast pulse can propagate, is convex as a functioglef. (b)
) f_ f - f_
well, and prevent the propagation of the fast pulse. In order . L gee=8 . 1L gge=12 . III. gge=20
to study this hypothesis, we analyze the appearance of prope\leloci,[y
. - f f f ’
gating pulses in thgg-0,e andgge-gg, planes. v (1/ms)
The regimes in which the two pulse types can propagate o 5] 5
in the ngE—g|E plane are shown in Fig. 8. Fast pulses can \
propagate ifg,e is below a certain valug)g nax that in- \
creases Wiﬂ’ngE (dotted ling. The curve ofg;e max as a [y — 0 1 L - 0 .
function of gL is convex(i.e., it has a positive curvature
and dg|E,maX/dngE>0. Therefore, to compensate for an in- 50 50 50

crease ofg,fEE and prevent fast-pulse propagation, the en- &(ms) '.'
hancement in the level &g max Should itself increase with {

§ 0 0 0*_!*
OeE- '

The minimal and maximad,e values for which the slow '
pulses cease to exist both grow almost linearly vgfh, =01y 501 4 074
although with different slopes. Interestingly, for a large 0 40 80 0 40 80 0 40 80
enoughgte, there are two HB points on the slow—pulse_ al, ol — gape 9
branch. The slow pulse is unstable between them and it ---- unstable

stable in two separatgc intervals. FIG. 9 Reqi ¢ oxi d stability of f oy
The regimes in which the two pulse types can propagate - 9. (8) Regimes of existence and stability of fast and/or

. £ . . slow pulses in thengE-ng, plane;g,e=6.5. The meanings of the
in the gee-Qe, plane are shown in Fig.(8. Except for a lines and the shading are the same as in Fig. 5. The asterisk points

small parameter regime at smg&E values, the dependence , 5 codimension-2 pitchfork bifurcation of two pairs of SNB solu-
of the maximalgg, value for which fast pulses can propagate tions. Two more SNB lines, that stem from this pitchfork bifurca-
(dotted ling is convex and has a positive curvature. Thistion and correspond to the annihilation point of two unstable solu-
behavior is functionally similar to the dependenceggf .« tions, are not plotted for simplicity. In the white regime bounded by
ongfe for constantgt, . At low gf, values, this regime has the thin long-dashed line, the thin solid line, and the abscissa, only
a “tail” that points back toward |ar9@fEE values. excitatory cells fire as a pulse propagates. The dotted line, below
Slow pulses can propagateg'ﬁl is above a certain value Which the fast_ pulse can propa_gate, is convex as a functig@@f
9t min (dashed lingthat first decreases and then increases ag?) The velocity » of propagating pulsegupper panels and the

. . . . . ff bet the firing ti f inhibit d itat
a function ofgt.. The asterisk points to a codimension-2 erence( between the firing times of inhibitory and excitatory

. . . r ~ . cells at the same positidiower panel§ as functions ofy, for the
pitchfork bifurcation(at ggg=11.6, g,z =10.6) of two pairs [ tarence parameter sef==6.5 and three values aff.: I. gt

of SNB solutions. Two more SNB lines, that stem from this_g | gt _—12. j11. g..=20. Solid lines represent stable pulses
pitchfork bifurcation and correspond to the annihilation pointazng dashed lines represent unstable pulses.

of two unstable solutions, are not plotted for simplicity. The

pitchfork bifurcation separates two different regimes. To de-solution undergoes a second SNB, in which it is connected to
scribe them, we should consider another pair of slow-puls@n unstable solution with positivevalues that increase with
solutions, which are unstable and therefore have been igncreasingngl CAt Iargerng, values, a second pair of slow-
nored, but here they come to play a role. In order to followpu|Se solutions emerges at a SN@E(: 25.3), and the one
their effect, it is useful to look at Fig.(B). For low gf¢  with larger velocity and smallel¢| is stable. It is easier to
values, such agfe=8 (1), a fast-pulse solution is stable at view it in the ¢ graph(lower panel, because in the graph

low gt,, and is destabilized at a SNB. The resulting unstablgupper panelit is hard to distinguish between the slow so-
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lutions. At largergt: values, such agte=12 (Il), which is (a)

slightly larger than the value off¢ at the pitchfork, the 20 % Slow Pulse
various branches are differently connected. The fast-pulse ® Bistable
solution is destabilized by a SNB as before, but the unstable % Fast Pulse
solution is now connected by a SNB to the stable slow-pulse - §:§Pu|se~ Vx

solution. Two unstable solutions, one with large positive
and one with large negative(for Iargengl) are connected at
a SNB, but do not affect the dynamics. At even larggg
values, such agt-=20(lll), the fast-pulse solution does not
destabilize ang, increasesy decreases only gradually, and
the negative values af have small absolute valué¢for ex- 0 50
ample,{=-0.94 forg,fz,=80). This pulse solution does not Ty (M)
destabilize even for larggt, values as 1000. This means (b)
that if ngE is large enough, the pulse cannot be prevented by
increasinggt, alone.

-==-- Slow Pulse: Min
— Slow Pulse: Max

—-— HB

20

D. Time constants of inhibitory neurons and synapses

When we study the effects of inhibition on pulse propa-
gation, we need to consider the time scales of inhibitory cells
and synapses. In our reference parameter set, we assume that
the passive time constants of the excitatory and inhibitory
neurons are equal. There are indications, however, that some
types of inhibitory interneurons have faster passive time con- 0
stantrg, in comparison with excitatory neurofis6]. In order
to examine the effects of varying,, on the pulse propaga-
tion, we calculated the regimes in which pulses can propa- G, 10. (a) Regimes of existence and stability of fast and/or
gate in thery-g;e plane, as shown in Fig. 18). Largeg,e slow pulses in the,-g,e plane(a) and in therg,e-g,e plane(b). In
values are needed to prevent the fast pulses from propagating), r,=r,z. The meanings of the lines and the shading are the
at very smallry, values. For larger, values, however, the same as in Fig. 5. Slow pulses can propagate in a wider parameter
maximal g,z value that allows fast-pulse propagation de-regime if the passive time constant of inhibitory cells is large,
creases very weakly with,, . The maximalg,z value that whereas fast pulses can propagate in a wider parameter regime if
allows slow-pulse propagation increases almost linearly withinhibition decays slowly with time.

7o) values if 7y, is not too small.

Varying the 75, the decay time of inhibitory synapses
while keeping the equality~;;= 75, causes different ef-
fects, as seen in Fig. ). The maximalg,g that is needed
for terminating the fast pulse increases linearly withe.
This can be explained by the fact that the synaptic functions For the reference parameter set, we use the vaiygs
ag,(t) are normalized such that their integral i$Hg. (2)].  =o0g =1, og=0,;=0.5. The rationale behind this choice
Therefore, the peak af,g is proportional to 175 . If 7qgis  of parameters is that excitatory pyramidal cells in general,
increasedg,e should be increased proportionally to keep theand especially the pyramidal neurons of layer V in neocor-
level of inhibition just after the spike constant. For fast inhi- tex, have a more horizontally widespread axonal arborization
bition (small 7,g), there is a continuous transition from a in comparison with the inhibitory neocortical neurdris].
fast pulse to a slow pulse age increases. For larger values Except for this qualitative information, the relationships be-
of 75, the g,e interval for which the slow pulse exists tween the four footprint lengths, are not known. In some
shrinks. Moreover, a Hopf bifurcation destabilizes the slownumerical simulations of conductance-based models of exci-
pulse at middle levels of,¢ along this interval. As a result, tatory and inhibitory neurongl9], propagating pulses were
the slow pulse is stable at moderatgg values only in a obtained foro\g>oge. We, therefore, consider the effects
small g, interval; at larger e, it does not exist at all. of varying the footprint lengths. In Fig. 1d), we vary o
Interestingly, our numerical calculation of the bifurcation ando,, while keeping the equality g =0, , for g,e=6. As
lines shows that the HB line intersects the SNB lines at therg and o), increase,v increases and increases from a
cusp (where 75;e=43), and for 7;g values just below the negative value of a few tens of ms to a negative value of a
cusp it runs just above, but very close to, the lower SNB linefew ms. This implies that for this specific value gfg,
Since the eigenvalues corresponding to the HB remailincreasing the inhibitory footprint lengths causes the pulse
bounded away from zero as the curve hits the SNB, thigproperties to evolve gradually from those of a “slow” pulse
point is not a Takens-Bogdonav poifdouble zero eigenval- to those of a “fast” pulse. To further explore effects of vary-
ue). Rather it is the fold-Hopf bifurcatiofil 7] in which there  ing the inhibitory footprint lengths at variougg values, we

gIE

10

Continuous

20 40
Tye (MS)

o

is simultaneously a pair of imaginary eigenvalues and a zero
' eigenvalue.

E. Effects of footprint lengths

061911-9



DAVID GOLOMB AND G. BARD ERMENTROUT PHYSICAL REVIEW EG65 061911

(a) (b) (©
0,=6 G,=0,=2.5 0e=6
# Slow Pulse
& Bistable
% Fast Pulse
% Irregular

2_
Velocity, — stable
v (1/ms) --- unstable

14 14 1

04 0+ 04—
C (ms) /
-20 1 -20 1 —20 1 \

401 401 401

-

0 1_2 30 10 20 0 1_2 3 (b)
0,0y O O

L g,=10 IL. g,=50

FIG. 11. Effects of varying the spatial coupling decay lengths. VeIocit)Z/,_ 2'\
The velocity v (upper panelsand the time difference (lower v (1/ms) N
panel$ of propagating pulses are plotted as function of three pa- N,
rameters. Solid lines represent stable pulses and dashed lines repre- Ly Ly N
sent unstable pulse&a) The connectivity lengthe ¢ and o), are
varied foro|, =0 andg,e=6. (b) The conductancgg is varied 5\
for o, = o,g=2.5 (thick lines and o, = o, =0.5[thin lines, iden- 05 T 05 '
tical to the thick lines in Fig. ®)]. (c) The connectivity lengthrg, B
is varied. 07

show the values of and{ as a function ofy,¢ in Fig. 11(b) -10- 3 -10-
for two values ofo\g and o, : 2.5 (thick lines and 0.5(thin
lines). For both cases, there is a transition, from a fast pulse
at low g, to a slow pulse at high,z . The transition is more =207 ‘ . . ‘
gradual for largeto,;z and o, , and occurs at higher values 0 5 . 10 0 59|E 10
of g,e . These results show that the two types of pulses can
be obtained both in cases where inhibition is less widespread FIG. 12. (a) Regimes of existence and stability of fast and/or
than excitation and in cases where inhibition is more wideslow pulses in theg;;-g;e plane. Saddle-node bifurcation lines:
spread than excitation. solid line, terminatio_n of_ the slow pu_Ise; dotted line, termination of
As the E-to-l footprint length og, increases, the pulse t_he fast pulse. Terminations of_solutlons because of_(E)q.dashed
form switches from a fast pulse to a slow pulse, as shown irlu'ne’ slow pglseﬁ th-dashed '".16' f‘f"St pglse' Shadings: dark gray,
Fig. 11(c). This result can be explained by the fact that WheanSt(’jlble re.glme, light gray, regime in which only slow pulses can
. propagate; mesh of diagonal lines, regime in which only fast pulses
the slow pul_se propagatel;,cells fire much before tth can propagate; bent diagonal lines, irregular puld®sThe velocity
cells. If og, is more widespread thaogg, | cells receive

- 3 : : E v (upper panelsand the time differencé (lower panels of propa-
excitatory inputs before their neighborigcells, and there-  gating pulses as functions g for g, =10 (I) andg,, =50 (Il).

fore have higher chances to fire before thEseells, and to  Line types: thick solid lines, stable traveling pulses; thick dashed
slow down the pulse. lines, unstable pulses; thin dotted linésnphysical values forv
and{ that are obtained by solving Eqd.4),(15); dot-dashed lines,
F. I-to-l conductance prevents the slow pulse and may cause irregular pulses_, computed using numerical simulations. The arrows
irregular pulse propagation beloyv the absmssa_of _th_e upper pa_nt_als correspond tgnghe_alu_es
of Fig. 13. Strong inhibitory-to-inhibitory conductance eliminates

The I-to-1 conductancey,; was found to strongly affect the slow pulses and converts the fast traveling pulses into irregular
the firing properties of networks under steady-state condipulses.

tions [20,21]. In order to examine howg, affects pulse

propagation, we study the regimes where various types of dV\[— v, Ti(—¢v)]

pulses can propagate in a two-parametgrg,c plane, as : ! >0. (36)
shown in Fig. 12a). In this figure, solid and dotted lines dt

represent saddle-node bifurcation in which slow and fast

pulses are terminated, respectively, g values are in- Such a termination is denoted by a dashed line for the slow
creased. In addition, pulses with large enogghare termi-  pulse and by a dot-dashed line for the fast pulse. The bistable
nated because the solution violates E?). Specifically, regime and the regimes in which either slow or fast pulses

—— stable

---- unstable
- not exist

—20 1 —-— irregular
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A =50, g=7.5

A, 9,=50, g=12.5

different initial conditions propagate also outside of this re-
gime. In Fig. 12Zb), we compared the velocity and the
average delay of the irregular pulse¢dot-dashed lingto
the values ofv and ¢ of the “nonexisting pulses”—the so-
lution of Egs.(14),(15) that violates conditiori36). The av-
erage value of¢| of the irregular pulses is smaller thhf} of
the “nonexisting pulse,” and, as a resulit,is larger.
We can understand the appearance of irregular pulses by
using the following argument. The strong mutual inhibition
FIG. 13. Examples of neuronal firing times during the propaga-between inhibitory neurons at largg, values prevents the
tion of irregular pulses is shown for the reference parameter set angsropagation of a regular traveling pulse because whenl one
Ay 9,=50, gig=75, v=145 ms!; A;: g,=50, gie=12.5,  cell fires, it reduces the propensity of its neighborirzgll to
v=091 ms*; B: g, =10, g;e=6.5, »=0.06 ms. Firing times of  fire afterward. As a result, neighboririgcells tend to fire
excitatory cells are denoted by solid circles, and firing times ofyith time delays between them.
inhibitory cells are denoted by open squares. Therepar@0 neu-
rons from each type within each unit lengitdg), and spikes of all
the neurons are plotted. The number of neurons in each population
is N=1000 and the total length of the system iss3Q.

B.9,=10,9,.=6.5

&

580 600 620 640 660
t (ms)

V. FINITE AXONAL CONDUCTANCE VELOCITY

A. Traveling pulse solution with finite axonal
conductance velocity

can propagate are shaded as in the other tw.o-parameter fig- The response of a postsynaptic neuron to a firing of a
ures. The slow pulse can propagate onlygif is small  presynaptic cell is delayed because the conductance velocity
enough, and its regime of existence shrinks rapidlygas  of action potential in axons is a finite value, denoted here by

increases. At lowg,, value, the slow pulse is terminated as c. For finite ¢, the Volterra equations for the firing times
gie increases by a SNB, and at higher values, it is terminated _(x) become

because of Eq(36). Fast pulses are terminated by SKi

gie increasesfor much largerg,, values in comparison with

the slow pulses. At even largey;, values, however, these

pulses are terminated by the condition of E86). The de-

pendence of and{ on g,e for two values ofg;, , 10 and 50, [x’ |} g fw
|

VTa/: E ggaj dX,WEa(X,)GEa

y=f,s

To(x)

is shown in Fig. 1%b). Forg, = 10, the fast traveling pulse is ~Te(x=x") == | dxwa(x7)
terminated by a SNB, whereas fg; =50, it is terminated
by condition(36).

What happens beyond the curve on which a pulse is ter-
minated by conditior(36)? Surprisingly, we find in numeri-
cal simulations that irregular pulses can propagate. Three Assuming a traveling pulse solution, EG.1), and defin-
examples of such pulses are shown in the rastergrams of Fig]g
13. These pulses are characterized by the fact that excitatory

-3
L v VT

XGy,

X
Ta0 = Ti(x=x") = —|. 37)

cells fire almost as in regular traveling pulses, whereas in-
hibitory cells segregate into two spatiotemporal clusters.
Neurons in the first cluster fire before their excitatory neigh-
bors almost with a constant time delf$;|. Neurons in the
second cluster fire after their inhibitory neighbors from the
first clusters, and oftefas in Fig. 18A), g,,=50] also after " X
their neighboring excitatory neurons. The pulses in Fig. v .= > g%Ef dXWEe(X)GEE(—>
13(A) have the characteristics of a fast pulse: inhibitory cells y=f.s 0 V-
fire either less than 1 ms before neighboring excitatory cells
or just after them, and is large[1.45 ms ! in (1) and 0.91
—1/ms in (I)]. In Fig. 13B) (g, =10), all the inhibitory
neurons fire before the neighboring excitatory neurons, and o
the segregation into two clusters is less strict. The pulse in _glEf 7dXV—+W|E GIE<L>1
Fig. 13B) has characteristics of a slow pulse: inhibitory cells 0 v_ V_

fire tens of ms before their neighboring excitatory cells, and (39)
v is small (0.06 ms?).

In order to define the border of the appearance of the "
irregular pulses, we carried out numerical simulations in Vo= gglf dXWE|(X—§V)GE|(i)
which we started from shock initial conditions and found out y=f.s 0 v
whether a pulse can propagate. The results are shown in the

1 1)1
;"r‘g , (38)

one obtains fo <0,

% N
_gIEf dXV\/lE(X+§V—)G|E(_)
—{v 14

Vy
—(x+v_)
v_

regime shaded by the bent diagonal lines in Figial2\e
cannot rule out the possibility that pulses that are excited by
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enable this coalescence, the upper, stable branch should
“bend” toward the lower, unstable branch, and as a result
should decrease atvalues lower than the SNB values. This
intuitively unexpected result demonstrates the nonlinear dy-
namics nature of the pulse propagation phenomenon.

Velocity,
v (1/ms)
0.51

VI. DISCUSSION
A. Properties of fast and slow pulses

Analysis of models of interacting excitatory and inhibi-
tory neuronal populations with spatially decaying connectiv-

-10 . ﬁﬁfme ity reveals that two types of pulses can propagate. Fast pulses
| can be regarded as a continuation of propagating pulse states
0 S in networks with only excitatory populations. They are char-
¢ (1/ms) acterized byE cells firing before or just after the neighboring

FIG. 14. The velocity of propagating pulse&ipper pang| and I cells, and _by monotonic increase of the nel_JronaI potential
the difference between the firing times of inhibitory and excita- P€fore the firing. Slow pulses are characterizedboyells
tory cells at the same positioflower pane), as functions of the firing substantially after thé cells, and by a decrease in the
axonal conductance velocityfor the reference parameter agg: potential of thek cells before a subsequent potential increase
=5.4. The velocity of the fast pulse decreases wittear the SNB.  until the neuron reaches threshold and fires. As a parameter
of the system varies, the transition from a fast-pulse param-

All the terms in Eqs(39),(40), except for the “backward” ~ €ter regime to a slow-pulse parameter regime can occur
term[the third integral in Eq(39), representing the effect of through a bistable regime, in which both types of pulses can
the| cell spike onE cells with smallerx], are similar to the ~propagate. It can also occur continuously, as the velocity of
corresponding terms in Eq$12),(13), but the velocity v the pulses decreases and the time lead cgll firing in
there is replaced by_ . Using Eq.(5), one can see that in comparison witrE cell firing increases. A third possibility is
that “backward” term, there is an additional modification: that the fast pulse stops propagating as a parameter is varied,
oe is replaced byrie X v_ /v, . Sincev_>v,, thismeans and a slow pulse appears in a distant parameter regime. The
that the length constamt,c is “stretched” in this term. Simi-  existence of propagating fast and slow pulses with the pos-
lar results are obtained for tHel term in the equations for sibility of bistability was reported in Ref12]. In this article,
{>0. we pursue our investigation of the properties of these two

In networks with excitation only, introducing finite axonal pulse types and their dependence on network parameters, as
conductance velocitg reducesy, because the term_ re-  summarized here.
placesv in the dynamical equatiofil0]. In networks with Fast pulses are robust with respect to initial conditions. If
excitation and inhibition, however, the factor. can play a they are stable, a strong enough initial shock will evoke
role as well, and in principle, decreasiagnayincreasev, as  them. In contrast, slow pulses are not so robust. Even if they

shown below. are stable, an initial shock often does not evoke them. Even
if it does, the system dynamics can converge into this state
B. Pulse velocity may decrease witft after a long transient with fast or lurching pulse characteriza-

. . . . tio
Conduction V.eIOC'.W_Of unmyellneq axons is of order 1 Slow pulses can propagate even without slow excitation,
m/s [22,23. Taking it into account is expected to affect L .
) but the parameter regime in which they are stable strongly
mostly the fast pulses, whereas its effect on the slow pulses

is expected to be very small. Indeed, numerical solutions o >S<pa_1nds as the level of slo&to-E (_axc_|tatc_)ry conductance .
increases. Moreover, slow excitation increases the basin

Egs. (39),(40) show that in most cases, the velocity of the Yee ; L .
fast pulses is reduced i is considered to be finite rather ©f attraction of slow pulses and the possibility of evoking

than infinite. There is, however, an exception that is shown ifhem with shock |n|t_|al_cond|t|ons. Fast P‘.J'Ses are hardly
Fig. 14: the fast pulse exists at smallalues but ceases to affécted by slow excitation, as was shown in models of net-
exists at a SNB at a critica values. For a range afvalues ~ WOrks of excitatory neurong6]. The parameter regime in
smaller than this critical value, the pulse velocity decreaseg"h'Ch fa_st pulse can propagate, as well as their velocity,
with c. For this particular parameter regime, a slow pulse carstrongly increase as the level of fésto-E excitatory con-
also propagate i is not too small, and its velocity is almost ductancegEE increases. In particular, the curve of maximal
independent of. 0 andgg, for which fast pulses can propagate are convex
The decreasing with increasingc may occur in param-  as a function ofgge. The dependence of the parameter re-
eter regimes in which the fast pulse does not existdor gime in which slow pulse can propagate gbe is more
— o, but exists ifc is smaller than a certain value of a SNB. complicated. There are conditions in which increasirig
At a SNB, a stable branch and an unstable branch of solusupports the propagation of slow pulse, whereas in other
tions should coalesce and eliminate each other. In order toonditions it prevents propagation.
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The two pulse types behave differently with respect tospikes other than the first one_do not generate any postsyn-
changes in the kinetics of inhibitory cells and synapses. Inaptic effect. Far from these limits, however, this approxima-
creasing the passive time constant of inhibitory cefjsde-  tion can have an effect on the dynamical mechanisms of the
creases the regime in which fast pulses can propagate SIOW-pulse propagation. In networks with excitatory popula-
though only slightly for moderate and largg, values, but tions only, the resglts of thls_ modgl are qualitatively similar
- ; : ' . to the results obtained by simulations of conductance-based
increases the regime of slow-pulse propagation. Increasin odel (compare[8—10 with [6]). In two-population sys-
the decay time of inhibitory conductance increases the Pare P ' Pob y

: in which fast pul i dd ms, however, other scenarios can happen. For example, in
rameter regime in which fast pulses can propagate, and A, model, the potential of excitatory neurons becomes nega-
creases, and even eliminates, the regime of slow-pulse prop

; flve (hyperpolarized before it becomes positive again and
gaton. o _ o the neuron can fire. If thecells can fire several fast spikes,

Increasing the inhibitory footprinfconnectivity ranges ey can prevent the cell from firing. The model described
o and oy, makes the transition from fast to slow pulse i this work can be regarded, therefore, as a paradigm for
smoother, but does not seem to modify the qualitative propijjuminating a possible mechanism for a slow-pulse propaga-
erties of the behavior. In particuldreells lead in firing ¢ is  tion, which is the advanced firing dfcells. We have carried
negative during the slow pulse even if ¢ ando, are large.  out preliminary simulations of conductance-based neuronal
Extending theE-to-l footprint rangeog, tends to transfer the models, in which cells can fire many spikes, demonstrated a
system from a fast-pulse state to a slow-pulse state, becaug@nsition from a fast pulse to a slow pulse@s increases.
the widerE-to-I connectivity causes cells to receive their As in the one-spike model, inhibitory cells lead substantially
inputs before thé= cells and fire earlier. in firing during the slow pulse, but not during the fast pulse,

Enhancing thel-to-l conductanceg, decreases, then and slowE-to-E excitation was found to be important for
eliminates, the regime in which slow pulse can propagate. Apropagation of slow, but not fast, pulses. Further analytical
high g,, values, even fast traveling pulse cannot propagatand numerical investigation of models with more spikes
because of the “repulsive” interaction between inhibitory in- should be carried out to see whether there are alternative
terneurons. Instead, the network exhibits irregular pulsesnechanisms for slow-pulse propagation in addition to the
during whichE cells fire almost as they fire during a regular mechanism described here.
traveling pulse, and cell segregate into two groups, which  Even adjacent cortical neurons have a delay of about 2 ms
fire with two different delay times with respect to their [25,26. The effects of this constant time delay on the propa-
neighboring excitatory cells. Irregular pulses can be regardegation of pulses in excitatory-only network were addressed
as pulses with “spatiotemporal clustering” of inhibitory [10], and it was found that they substantially reduce the pulse
cells. These pulses are different than lurching pulses that asgelocity. The effects of constant delays on the propagation of
observed in excitatory networks with del@%0] or in net-  slow pulses are smaller because these pulses are slow even
works of excitatory and inhibitory neurons with large, slow without delay, and therefore they are neglected in this work
E-to-E excitation and all the other synapses decaying fasfor simplicity.
[12]. Lurching pulses are characterized by periods of activity
propagation followed by periods of silence and no propaga- C. Dynamical system aspects
ion. During irregular pulses activity does not stop, and there _ . . .
;?e nousile?wt pegr]iods.pThe irregula?pulses have Epatiotempo- The existence and stability of the traveling pulse solution

ral periodicity, at least approximately. From this respect, they?'© Studied using methods that resemble the existence and
are similar to lurching pulses. stability analysis of dynamical systems defined by sets of

coupled ordinary differential equatiod®®DES [27]. In sys-
tems of coupled ODEs, stability analysis is carried out by
assuming a small perturbation in the configuraijonphase

The model described here is based on two approximaspace and following its evolution in time. Here we assume a
tions. First, the subthreshold neuronal dynamics is describesimall perturbation in the firing time of a neuron at a certain
by an integrate-and-fire model. Second, each neuron is aposition and follow its evolution in space. The \Volterra rep-
lowed to fire only one spike. The first approximation doesresentation of the pulse dynamics, E8), simplifies the sta-
not seem to affect the main results of this paper, because thslity analysis of the pulse. Using this formalism, we obtain
key response to the activity of neuron to propagating pulsean eigenvalue equatiaf27), and the pulse is stable if all its
is that it integrates the response of other excitatory and insolutions have negative real parts. The stability analysis was
hibitory neurons and fires if the time-integrated amount oftherefore reduced to a regular bifurcation problem. There is,
excitation is strong enough. To further support this claim, wenowever, one difference between our system and systems of
replaced the integrate-and-fire scheme by the Morris-Lecatoupled ODEs, which is the “causality” criterio(®) that the
model, a version of a conductance-based mdadl, and  pulse solutions should obey.
find regimes of fast and slow pulses with bistability between In several casel®.g., Figs. 5 and 10)], we find numeri-
them (not shown. cally that a SNB line and a HB line intersect at a cusp bifur-

The one-spike approximation is exact in the limit of very cation. As we noted previously, at the point of intersection,
prolonged refractory period or very strong synaptic depresthe linearization has a pair of conjugate imaginary eigenval-
sion. In the first case, a neuron cannot fire a second spikeesand a zero eigenvalue. The local analysis of this bifur-
before the pulse has completely passed. In the second casation

B. Effects of approximations
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(Gavrilov-Guckenheimer or fold-Hopfis complicated(see  synaptic conductancgke is substantially increased, for ex-
Ref. [17], pp. 330—348 and requires further study in this ample, during certain types of learning tagks], theI-to-E

particular example. inhibition and theE-to-l excitation should increase consider-
ably in order to prevent the propagation of fast, epilepticlike
D. Comparison with other systems and models pulses. This prediction can be tested by dual intracellular

. . _recording between neurons from the excitatory and inhibi-
Slow pulses are not seen in neuronal networks with exCiy,y, o0 jations, and comparing the results with or without
tation only [6' 8-10, 28—3]3_beqau$e_ the mechanism of learning. Sixth, strong, and even moderate values-tofl
their generation requires leading inhibition. In particular, the’nhibition prevent the propagation of the slow pulse. On the
transition from a fast pulse state to a slow pulse state, whic ther hand, strongrto-l inhibition seems to be necessary for
may be accompanied by a bistable regime, is a unique pro 'enerating,stable states of persistent actij29,21]. In ex-

erty .Of our system. It hag not been obs'erved in models eriments, the slow pulse is sometimes accompanied by a
spatla_\IIy exten_ded one-dimensional excitable systems wit rolonged state of persistent activ[y]. Theoretical and ex-
d|ffus!ve coupl|ng[34—3q. . . perimental investigation of such systems should be carried

This work is devoted to studying propagation of neuronalout in order to examine how slow pulses and persistent ac-
activity into a silent regime, as observed experimentally intivity can occur in the same system.
cortical networks. Different spatiotemporal patterns are ob-
tained when “waves of phases” propagate within an active
region, as described in RgR37].

Propagation of fast and slow pulses was observed in We are thankful to E. Barkai, D. Hansel, P. Latham, J.
simulations of conductance-based models of networks of eXRubin, D. Saar, C. van Vreeswijk, and J.-Y. Wu for helpful
citatory and inhibitory populations, provided that the inhibi- discussions. This research was supported by Grant No.
tion has a more widespread connectivity than excitati®). 9800015 from the United States—Israel Binational Science
The mechanisms responsible for the generation and propaggoundation(BSF), Jerusalem, Israel, to D.G. and G.B.E.; it
tion of the various pulses in that system still remains to beyas supported in part by the National Science Foundation
explored. under Grant No. PHY99-07949 to G.B.E. D.G. thanks the

There have been population or firing rate models ofinstitute of Theoretical Physics, UCSB, where part of this

propagating waves in one and two populations. A piecewisgvork was carried out, for its hospitality.
linear system was analyzed in RE38] and more recently a

general two-population model was studied using singular
perturbation[39]. In Ref. [40], transient propagation of APPENDIXA: ELEMENTS OF THE STABILITY MATRIX
waves was numerically simulated in a model for binocular P ; _ ;
rivalry. In both Refs[39] and[38], only fast waves are de- ¢ <Soubst|tut|ng Eqs(5),(6) in Eqs.(23—(26) we obtain for
scribed. Whether bistability can occur in these firing rate
models is unknown.

Age(N)
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E. Relations to experiments 1

1
. — 2
Several results of the present model can be compared with  — 27 EQ%ETOEV ‘

) . . . . oget vroe)(oge+ vl
data from experiments on cortical slices. First, our theoreti- (Teet v7oe) (Teet V7see)

cal work shows that slow pulses can propagate even without 14

slow excitation, but slow excitation substantially enhances _ JEE

the parameter regime in which slow pulse can propagate. [oeet v7oe(l+Noge) [ ot ngE(1+>\aEE)]]
Experiments show that blocking the slow NMDA receptors —AE(0), (A1)

blocked the slow pulse or greatly reduced its intenffy is

consistent with the prediction. Second, our analysis shows

that there can be an abrupt transition from a fast pulse to % _ YIgToEY {

slow pulse as inhibition is increased. Preliminary experimen- (M) = 2(Tog— Ts|E) ex T—2|+>\v§
tal results[11] confirm this prediction. Third, the proposed
mechanism for slow-pulse propagation demands that inhibi-
tory cells fire before their neighboring excitatory cells. This
prediction can be tested by dual intracellular recording from

1
X
gt vrge(l+Nog)

adjacent excitatory and inhibitory neurons. Fourth, according _ 1 _ex i+)\v§)

to the theory, during the slow-pulse propagation, excitatory o~ vrge(l—NoE) ToE

cells should be hyperpolarized by inhibitory cells before

their potential increases again and they can fire. This theo- 1 _ 1

retical result can be tested experimentally using intracellular ot vrge(l+Nog) o= vre(l—ANoE)

recording. Note, however, that the shuntif@npd not hyper-
polarizing nature of certain types of inhibitory synapses +exr{£)
may modulate this behavior. Fifth, if the total fastto-E OE

1

og—vTsie(l—Nog)
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1
— , A2
0'|E_VTOE(1_7\(T|E)] A2
1 lv
A (N)=—2, =g 7 VZEX[{—)
ei(N) ; 29E| ol oel
% 1+)\0’E|
[0+ vro(1+Nog) ] [og+ vrle(1+Nog)]
(A3)
A;(N)=—Ag(0) L 2 !
W e 29T (oy+vre)(oy+vrg)
1+)\0'||
Loy +vro(1+Noy)][oy+vre(1+Noy)])”
(A4)
Similar equations are obtained f¢r0.
APPENDIX B: V,(X,0)
For (<0, Eq.(35) becomes
VeX,0)= 2 Cle—Cie, (B1)
y=n
Vi(x,0)= 2, C%4-Cy, (B2)
y=f,s
where
ToeO 14 —X
Cle=0&e === ex;{—).
2(vrogt o) (VTigEt oRE) OEE
(B3)
Forx>—{v,
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o

TogO |EV _X_gV

Cle=0ie 2(v1oet o) (VTg et o)

=
(B4)

For O<x<—{v,

2
VT X+ v

TsIEV

TOEV
Ce=
'E gIE(TOE_Tle)

o

2 _ 22
TE= V T5E

o

01e( Toe— Tsie)

2(oig—v7oe) (01— V7giE)

X+ v

TogV

X+ v

(]

+

(B5)

X
—) (B6)

OE|

ex;{
Y

4 ex;{
2(vro + og)(vrlet og)
o

APPENDIX C: NUMERICAL TECHNIQUES

ToIOEIV
Y
Cé=

C.= Tolonv e
! g“2(VTO|+(T||)(VTs||+U||)

—X—{V)
ay '

(B7)

For solving Egs.(14),(15), we extract{ from Eq. (15).
After substituting the term fo¢ in Eq. (14), we obtain a
single algebraic equation far, which we solve numerically
in the interval ofv values for which{ is guaranteed to be
negative. Similarly, we extradt from Eq. (16), substitute it
in Eq. (17), and solve the resulting equation in the regime in
which ¢ is guaranteed to be positive.

For calculating stability, we follow the solutions of Egs.
(27),(28) using xPPAUT [41]. This calculation is carried out
separately fog <0 and for{>0.
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